empymod Documentation Release 1.2.1 **Dieter Werthmüller** # Contents | 1 | Info | | 3 | |----|-------------|---|-----------| | | 1.1 | Installation & requirements | 3 | | | 1.2 | Usage | 3 | | | 1.3 | Structure | 5 | | | 1.4 | Missing features | 5 | | | 1.5 | Testing | 5 | | | 1.6 | Citation | 6 | | | 1.7 | License | 6 | | | 1.8 | Notice | 6 | | | 1.9 | Note on speed, memory, and accuracy | 7 | | | 1.10 | FFTLog | 9 | | | 1.11 | References | 9 | | 2 | Code
2.1 | model - Model EM-responses | 11 | | | 2.2 | kernel - Kernel calculation | | | | 2.3 | transform - Hankel and Fourier Transforms | 27 | | | 2.4 | filters - Digital Filters for FHT | 29 | | | 2.5 | utils – Utilites | 31 | | 3 | Indic | es and tables | 39 | | Bi | bliogra | aphy | 41 | | Pv | thon N | Module Index | 43 | Version: 1.2.1; Date: Mar 11, 2017 Manual for empymod, a one-dimensional, electromagnetic forward modeller in Python. The electromagnetic python modeller *empymod* can model electric or magnetic responses due to a three-dimensional electric or magnetic source in a layered-earth model with electric vertical isotropy (ρ_h, λ) , electric permittivity (ϵ_h, ϵ_v) , and magnetic permeability (μ_h, μ_v) , from very low frequencies $(f \to 0 \text{ Hz})$ to very high frequencies $(f \to GHz)$. Contents: Contents 1 2 Contents # CHAPTER 1 Info The latest version of this documentation can be found at https://empymod.readthedocs.io. # **Installation & requirements** The easiest way to install the latest stable version of *empymod* is via *conda*: ``` > conda install -c prisae empymod ``` or via pip: ``` > pip install empymod ``` Alternatively, you can download the latest version from GitHub and either add the path to *empymod* to your python-path variable, or install it in your python distribution via: ``` > python setup.py install ``` Required are python version 3.4 or higher and the modules *NumPy* and *SciPy*. If you want to run parts of the kernel in parallel, the module *numexpr* is required additionally. If you are new to Python I recommend using a Python distribution, which will ensure that all dependencies are met, specifically properly compiled versions of *NumPy* and *SciPy*; I recommend using Anaconda (version 3.x; continuum.io/downloads). If you install Anaconda you can simply start the *Anaconda Navigator*, add the channel *prisae* and *empymod* will appear in the package list and can be installed with a click. # **Usage** The main modelling routines is *bipole*, which can calculate the electromagnetic frequency- or time-domain field due to arbitrary finite electric or magnetic bipole sources, measured by arbitrary finite electric or magnetic bipole receivers. The model is defined by horizontal resistivity and anisotropy, horizontal and vertical electric permittivities and horizontal and vertical magnetic permeabilities. By default, the electromagnetic response is normalized to to source and receiver of 1 m length, and source strength of 1 A. A simple frequency-domain example, with most of the parameters left at the default value: ``` >>> import numpy as np >>> from empymod import bipole >>> # x-directed bipole source: x0, x1, y0, y1, z0, z1 >>> src = [-50, 50, 0, 0, 100, 100] >>> # x-directed dipole source-array: x, y, z, azimuth, dip >>> rec = [np.arange(1, 11) *500, np.zeros(10), 200, 0, 0] >>> # layer boundaries >>> depth = [0, 300, 1000, 1050] >>> # layer resistivities >>> res = [1e20, .3, 1, 50, 1] >>> # Frequency >>> freq = 1 >>> # Calculate electric field due to an electric source at 1 Hz. >>> # [msrc = mrec = True (default)] >>> EMfield = bipole(src, rec, depth, res, freq) >>> EMfield = bipole(src, rec, depth, res, freq, verb=4) :: empymod START :: [m] : 0 300 1000 1050 depth res [Ohm.m]: 1E+20 0.3 1 50 1 aniso [-] : 1 1 1 1 1 epermH epermV [-] : 1 1 1 1 1 [-]: 1 1 1 1 1 mpermH [-]: 1 1 1 1 1 mpermV [-]: 1 1 1 1 1 Hankel : Fast Hankel Transform > Filter : Key 201 (2009) Hankel Opt. : None Loop over : None (all vectorized) Source(s) : 1 binols (: 1 bipole(s) Source(s) > intpts : 1 (as dipole) > length [m] : 100 > x_C [m] : 0 > y_c [m] : 0 > z_c [m] : 100 > azimuth [°] : 0 > dip [°]: 0 Receiver(s) : 10 dipole(s) > x [m] : 500 - 5000 : 10 [min-max; #] : 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 [m] : 0 - 0 : 10 [min-max; #] : 0 0 0 0 0 0 0 0 0 [m] : 200 > azimuth [°] : 0 - 0 : 10 [min-max; #] : 0 0 0 0 0 0 0 0 0 0 [°]: 0 - 0: 10 [min-max; #] : 0 0 0 0 0 0 0 0 0 0 Required ab's : 11 :: empymod END; runtime = 0:00:00.022349 :: 1 kernel call(s) >>> print (EMfield) [1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j ``` 4 Chapter 1. Info ``` -3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j 1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j 1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j 6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j] ``` Have a look at the notebooks for more extensive examples including figures. #### **Structure** - model.py: EM modelling routines. - utils.py: Utilities for *model* such as checking input parameters. - **kernel.py**: Kernel of *empymod*, calculates the wavenumber-domain electromagnetic response. Plus analytical, frequency-domain full- and half-space solutions. - **transform.py**: Methods to carry out the required Hankel transform from wavenumber to frequency domain and Fourier transform from frequency to time domain. - filters.py: Filters for the Fast Hankel Transform (FHT, [Anderson_1982]) and the Fourier Sine and Cosine Transforms [Anderson_1975]. # Missing features A list of things that should or could be added and improved: - Kernel - Include *scipy.integrate.quad* as an additional Hankel transform. There are cases when both *QWE* and *FHT* struggle, e.g. at very short offsets with very high frequencies (GPR). - A cython or numba (pure C?) implementation of the kernel and the transform modules. Maybe not worth it, as it may improve speed, but decrease accessibility. Both at the same time would be nice. A fast C-version for calculations (inversions), and a Python-version to tinker with for interested folks. (Probably combined with default parallelisation, removing the numexpr variant.) - More modelling routines: - Convolution with a wavelet for GPR (proper version of *model.gpr*, needs another HT/FT). - Various source-receiver arrangements (loops etc). - Load and save functions to store and load model, together with all information. - Module to create Hankel filters (nice to have addition, mainly for educational purposes). - GUI. - Add a benchmark suite, e.g. http://asv.readthedocs.io, in addition to the testing suite. # **Testing** The modeller comes with a test suite using *pytest*. If you want to run the tests, just install *pytest* and run it within the *empymod*-top-directory. 1.3. Structure 5 It should run all tests successfully. Please let me know if not! Note that the installations via conda/pip do not have the test-suite included. To run the test-suite you must download *empymod* from GitHub. # Citation I am in the process of publishing an article regarding *empymod*, and I will put the info here once it is reality. If you publish results for which you used *empymod*, please consider citing this article. Also consider citing [Hunziker_et_al_2015] and [Key_2012], without which empymod would not exist. #### License Copyright 2016-2017 Dieter Werthmüller Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at ``` http://www.apache.org/licenses/LICENSE-2.0 ``` Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. See the LICENSE-file in the root directory for a full reprint of the Apache License. #### **Notice** This product includes software that was initially (till 01/2017) developed at *The Mexican Institute of Petroleum IMP* (*Instituto Mexicano del Petróleo*, http://www.imp.mx). The project was funded through *The Mexican National Council of Science and Technology* (*Consejo Nacional de Ciencia y Tecnología*, http://www.conacyt.mx). This product is a derivative work of [Hunziker_et_al_2015] and [Key_2012], and their publicly available software: - 1. Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80, F1-F18; DOI: 10.1190/geo2013-0411.1; Software: software.seg.org/2015/0001. - 2. Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21-F30; DOI: 10.1190/GEO2011-0237.1; Software: software.seg.org/2012/0003. 6 Chapter 1. Info Both pieces of software are published under the *SEG disclaimer*. Parts of the modeller *emmod* from Hunziker et al, 2015, is furthermore released under the *Common Public License Version 1.0 (CPL)*. See the *NOTICE*-file in the root directory for more information and a reprint of the SEG disclaimer and the CPL. # Note on speed, memory, and accuracy There is the usual trade-off between speed, memory, and accuracy. Very generally speaking we can say that the *FHT* is faster than *QWE*, but *QWE* is much easier on memory usage. I doubt you will ever run into memory issues with *QWE*, whereas for *FHT* you might for ten thousands of offsets or hundreds of layers. Furthermore, *QWE* allows you to control the accuracy. There are two optimisation possibilities included via the opt-flag: parallelisation (opt='parallel') and spline interpolation (opt='spline'). They are switched off by default. The optimization opt='parallel' only affects speed and memory usage, whereas opt='spline' also affects
precision! I am sure *empymod* could be made much faster with cleverer coding style or with the likes of *cython* or *numba*. Suggestions and contributions are welcomed! ## Depths, Rotation, and Bipole **Depths**: Calculation of many source and receiver positions is fastest if they remain at the same depth, as they can be calculated in one kernel-call. If depths do change, one has to loop over them. **Rotation**: Sources and receivers aligned along the principal axes x, y, and z can be calculated in one kernel call. For arbitrary aligned di- or bipoles, 3 kernel calls are required. If source and receiver are arbitrary aligned, 3x3 hence 9 kernel calls are required. **Bipole**: Bipole increase the calculation time by the amount of integration points used. For a source and a receiver bipole with each 5 integration points you need 5x5 hence 25 kernel calls. You can calculate it in 1 kernel call if you set both integration points to 1, and hence calculate the bipole as if they were dipoles at their centre. **Example**: For 1 source and 10 receivers, all at the same depth, 1 kernel call is required. If all receivers are at different depths, 10 kernel calls are required. If you make source and receivers bipoles with 5 integration points, 250 kernel calls are required. If you rotate the source arbitrary horizontally, 500 kernel calls are required. If you rotate the receivers too, in the horizontal plane, 1'000 kernel calls are required. If you rotate the receivers also vertically, 1'500 kernel calls are required. If you rotate the source vertically too, 2'250 kernel calls are required. So your calculation will take 2'250 times longer! No matter how fast the kernel is, this will take a long time. Therefore carefully plan how precise you want to define your source and receiver bipoles. Table 1.1: Example as a table for comparison: 1 source, 10 receiver (one or many frequencies). | | source | e bipole | | receiver bipole | | | | |--------------|--------|----------|------|-----------------|---------|------|---------| | kernel calls | intpts | azimuth | dip | intpts | azimuth | dip | diff. z | | 1 | 1 | 0/90 | 0/90 | 1 | 0/90 | 0/90 | 1 | | 10 | 1 | 0/90 | 0/90 | 1 | 0/90 | 0/90 | 10 | | 250 | 5 | 0/90 | 0/90 | 5 | 0/90 | 0/90 | 10 | | 500 | 5 | arb. | 0/90 | 5 | 0/90 | 0/90 | 10 | | 1000 | 5 | arb. | 0/90 | 5 | arb. | 0/90 | 10 | | 1500 | 5 | arb. | 0/90 | 5 | arb. | arb. | 10 | | 2250 | 5 | arb. | arb. | 5 | arb. | arb. | 10 | #### **Parallelisation** If opt = 'parallel', a good dozen of the most time-consuming statements are calculated by using the *numexpr* package (https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide). These statements are all in the *kernel*-functions *greenfct*, *reflections*, and *fields*, and all involve Γ in one way or another, often calculating square roots or exponentials. As Γ has dimensions (#frequencies, #offsets, #layers, #lambdas), it can become fairly big. The module *numexpr* uses by default all available cores up to a maximum of 8. You can change this behaviour to a lower or a higher value with the following command (in the example it is changed to 4): ``` >>> import numexpr >>> numexpr.set_num_threads(4) ``` This parallelisation will make *empymod* faster if you calculate a lot of offsets/frequencies at once, but slower for few offsets/frequencies. Best practice is to check first which one is faster. (You can use the included *jupyter notebook*-benchmark.) ## Spline interpolation If opt = 'spline', the so-called *lagged convolution* or *splined* variant of the *FHT* (depending on htarg) or the *splined* version of the *QWE* are applied. The spline option should be used with caution, as it is an interpolation and therefore less precise than the non-spline version. However, it significantly speeds up *QWE*, and massively speeds up *FHT*. (The *numexpr*-version of the spline option is slower than the pure spline one, and therefore it is only possible to have either 'parallel' or 'spline' on.) Setting opt = 'spline' is generally faster. Good speed-up is achieved for *QWE* by setting maxint as low as possible. Also, the higher nquad is, the higher the speed-up will be. The variable pts_per_dec has also some influence. For *FHT*, big improvements are achieved for long FHT-filters and for many offsets/frequencies (thousands). Additionally, spline minimizes memory requirements a lot. Speed-up is greater if all source-receiver angles are identical. FHT: Default for pts_per_dec = None, which is the original lagged convolution, where the spacing is defined by the filter-base, the transform is carried out first followed by spline-interpolation. You can set this parameter to an integer, which defines the number of points to evaluate per decade. In this case the spline-interpolation is carried out first, followed by the transformation. The original lagged convolution is generally the fastest for a very good precision. However, by setting pts per dec appropriately one can achieve higher precision, normally at the cost of speed. **Warning:** Keep in mind that it uses interpolation, and is therefore not as accurate as the non-spline version. Use with caution and always compare with the non-spline version if you can apply the spline-version to your problem at hand! Be aware that the *QWE*- and the *FHT*-Versions for the frequency-to-time transformation *always* use the splined version and *always* loop over offsets. # Looping By default, you can calculate many offsets and many frequencies all in one go, vectorized (for the *FHT*), which is the default. The loop parameter gives you the possibility to force looping over frequencies or offsets. This parameter can have severe effects on both runtime and memory usage. Play around with this factor to find the fastest version for your problem at hand. It ALWAYS loops over frequencies if ht = 'QWE' or if opt = 'spline'. All vectorized is very fast if there are few offsets or few frequencies. If there are many offsets and many frequencies, looping over the smaller of the two will be faster. Choosing the right looping together with opt = 'parallel' can have a huge influence. 8 Chapter 1. Info #### **Vertical components** It is advised to use xdirect = True (the default) if source and receiver are in the same layer to calculate - the vertical electric field due to a vertical electric source, - configurations that involve vertical magnetic components (source or receiver), - all configurations when source and receiver depth are exactly the same. The Hankel transforms methods are having sometimes difficulties transforming these functions. # **FFTLog** FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT originally proposed by [Talman_1978]. The code used by empymod was published in Appendix B of [Hamilton_2000] and is publicly available at casa.colorado.edu/~ajsh/FFTLog. From the FFTLog-website: FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a periodic sequence of logarithmically spaced points. FFTlog can be used for the Hankel as well as for the Fourier Transform, but currently *empymod* uses it only for the Fourier transform. It uses a simplified version of the python implementation of FFTLog, *pyfftlog* (github.com/prisae/pyfftlog). #### References 1.10. FFTLog 9 10 Chapter 1. Info Code # model - Model EM-responses EM-modelling routines. The implemented routines might not be the fastest solution to your specific problem. Use these routines as template to create your own, problem-specific modelling routine! #### **Principal routines:** - bipole - dipole The main routine is *bipole*, which can model bipole source(s) and bipole receiver(s) of arbitrary direction, for electric or magnetic sources and receivers, both in frequency and in time. A subset of *bipole* is *dipole*, which models infinitesimal small dipoles along the principal axes x, y, and z. #### These principal routines make use of the following two core routines: - fem: Calculate wavenumber-domain electromagnetic field and carry out the Hankel transform to the frequency domain. - tem: Carry out the Fourier transform to time domain after fem. Two further routines are shortcuts for frequency- and time-domain dipoles, respectively, and mainly in for legacy reasons: - frequency: Shortcut of dipole for frequency-domain calculation. - time: Shortcut of dipole for time-domain calculation. Two more routines are more kind of examples and cannot be regarded stable; they can serve as template to create your own routines: - gpr: Calculate the Ground-Penetrating Radar (GPR) response. - wavenumber: Calculate the electromagnetic wavenumber-domain solution. ``` empymod.model.bipole(src, rec, depth, res, freqtime, signal=None, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, msrc=False, srcpts=1, mrec=False, recpts=1, strength=0, xdirect=True, ht='fht', htarg=None, ft='sin', ftarg=None, opt=None, loop=None, verb=2) ``` Return the electromagnetic field due to an electromagnetic source. Calculate the electromagnetic frequency- or time-domain field due to arbitrary finite electric or magnetic bipole sources, measured by arbitrary finite electric or magnetic bipole receivers. By default, the electromagnetic response is normalized to to source and receiver of 1 m length, and source strength of 1 A. **Parameters src, rec**: list of floats or arrays #### Source and receiver coordinates (m): - [x0, x1, y0, y1, z0, z1] (bipole of finite length) - [x, y, z, azimuth, dip] (dipole, infinitesimal small) #### **Dimensions:** - The coordinates x, y, and z (dipole) or x0, x1, y0, y1, z0, and z1 (bipole) can be single values or arrays. - The variables x and y (dipole) or x0, x1, y0, and y1 (bipole) must have the same dimensions. - The variable z (dipole) or z0 and z1 (bipole) must either be single values or having the same dimension as the other coordinates. - The variables azimuth and dip must be single values. If they
have different angles, you have to use the bipole-method (with srcpts/recpts = 1, so it is calculated as dipoles). Angles (coordinate system is left-handed, positive z down (East-North-Depth): - azimuth (°): horizontal deviation from x-axis, anti-clockwise. - dip (°): vertical deviation from xy-plane downwards. #### depth: list Absolute layer interfaces z(m); #depth = #res - 1 (excluding +/- infinity). res: array_like Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1. freqtime: array_like Frequencies f(Hz) if signal == None, else times t(s). **signal**: {None, 0, 1, -1}, optional #### Source signal, default is None: - None: Frequency-domain response - -1: Switch-off time-domain response - 0 : Impulse time-domain response - +1 : Switch-on time-domain response aniso: array_like, optional Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones. epermH, epermV: array_like, optional Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH = #epermV = #res. Default is ones. #### mpermH, mpermV: array_like, optional Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH = #mpermV = #res. Default is ones. msrc, mrec: boolean, optional If True, source/receiver (msrc/mrec) is magnetic, else electric. Default is False. srcpts, recpts: int, optional #### Number of integration points for bipole source/receiver, default is 1: - srcpts/recpts < 3 : bipole, but calculated as dipole at centre - srcpts/recpts >= 3 : bipole strength: float, optional #### Source strength (A): - If 0, output is normalized to source and receiver of 1 m length, and source strength of 1 A. - If != 0, output is returned for given source and receiver length, and source strength. Default is 0. #### xdirect: bool, optional If True and source and receiver are in the same layer, the direct field is calculated analytically in the frequency domain, if False it is calculated in the wavenumber domain. Defaults to True. ht: {'fht', 'qwe'}, optional Flag to choose either the *Fast Hankel Transform* (FHT) or the *Quadrature-With-Extrapolation* (QWE) for the Hankel transform. Defaults to 'fht'. htarg: str or filter from empymod.filters or array_like, optional #### Depends on the value for ht: - If ht ='fht': array containing: [filter, pts per dec]: - filter: string of filter name in *empymod.filters* or the filter method itself. (default: *empymod.filters.key_201_2009()*) - pts per dec: points per decade (only relevant if spline=True) **If none, standard lagged convolution is used.** (default: None) - If $ht = \text{`qwe': array containing: [rtol, atol, nquad, maxint, pts_per_dec]:}$ - rtol: relative tolerance (default: 1e-12) - atol: absolute tolerance (default: 1e-30) - nquad: order of Gaussian quadrature (default: 51) - maxint: maximum number of partial integral intervals (default: 40) - pts_per_dec: points per decade (only relevant if opt='spline') (default: 80) All are optional, you only have to maintain the order. To only change *nquad* to 11 and use the defaults otherwise, you can provide htarg=['', '', 11]. ft: {'sin', 'cos', 'qwe', 'fftlog'}, optional Only used if *signal*!= None. Flag to choose either the Sine- or Cosine-Filter, the Quadrature-With-Extrapolation (QWE), or FFTLog for the Fourier transform. Defaults to 'sin'. ftarg: str or filter from empymod.filters or array_like, optional #### Only used if *signal* !=None. Depends on the value for *ft*: - If $ft = '\sin'$ or 'cos': array containing: [filter, pts per dec]: - filter: string of filter name in *empymod.filters* or the filter method itself. (Default: *empymod.filters.key_201_CosSin_2012()*) - pts_per_dec: points per decade. If none, standard lagged convolution is used. (Default: None) - If ft = `qwe': array containing: [rtol, atol, nquad, maxint, pts_per_dec]: - rtol: relative tolerance (default: 1e-8) - atol: absolute tolerance (default: 1e-20) - nquad: order of Gaussian quadrature (default: 21) - maxint: maximum number of partial integral intervals (default: 200) - pts_per_dec: points per decade (only relevant if spline=True) (default: 20) All are optional, you only have to maintain the order. To only change *nquad* to 11 and use the defaults otherwise, you can provide ftarg=['', '', 11]. - If ft = 'fftlog': array containing: [pts_per_dec, add_dec, q]: - pts_per_dec: sampels per decade (default: 10) - add_dec: additional decades [left, right] (default: [-2, 1]) - q: exponent of power law bias (default: 0); $-1 \le q \le 1$ All are optional, you only have to maintain the order. To only change *add_dec* to [-1, 1] and use the defaults otherwise, you can provide ftarg=['', [-1, 1]]. opt : {None, 'parallel', 'spline'}, optional #### **Optimization flag. Defaults to None:** - None: Normal case, no parallelization nor interpolation is used. - If 'parallel', the package *numexpr* is used to evaluate the most expensive statements. Always check if it actually improves performance for a specific problem. It can speed up the calculation for big arrays, but will most likely be slower for small arrays. It will use all available cores for these specific statements, which all contain *Gamma* in one way or another, which has dimensions (#frequencies, #offsets, #layers, #lambdas), therefore can grow pretty big. The module *numexpr* uses by default all available cores up to a maximum of 8. You can change this behaviour to your desired number of threads *nthreads* with *numexpr.set num threads*(*nthreads*). • If 'spline', the *lagged convolution* or *splined* variant of the FHT or the *splined* version of the QWE are used. Use with caution and check with the non-spline version for a specific problem. (Can be faster, slower, or plainly wrong, as it uses interpolation.) If spline is set it will make use of the parameter pts_per_dec that can be defined in htarg. If pts_per_dec is not set for FHT, then the *lagged* version is used, else the *splined*. The option 'parallel' only affects speed and memory usage, whereas 'spline' also affects precision! Please read the note in the *README* documentation for more information. **loop**: {None, 'freq', 'off'}, optional Define if to calculate everything vectorized or if to loop over frequencies ('freq') or over offsets ('off'), default is None. It always loops over frequencies if ht = 'qwe' or if opt = 'spline'. Calculating everything vectorized is fast for few offsets OR for few frequencies. However, if you calculate many frequencies for many offsets, it might be faster to loop over frequencies. Only comparing the different versions will yield the answer for your specific problem at hand! **verb**: {0, 1, 2, 3, 4}, optional #### Level of verbosity, default is 2: - 0: Print nothing. - 1: Print warnings. - 2: Print additional runtime and kernel calls - 3: Print additional start/stop, condensed parameter information. - 4: Print additional full parameter information **Returns** EM: ndarray, (nfreq, nrec, nsrc) #### Frequency- or time-domain EM field (depending on signal): - If rec is electric, returns E [V/m]. - If rec is magnetic, returns B [T] (not H [A/m]!). In the case of the impulse time-domain response, the unit is further divided by seconds [1/s]. However, source and receiver are normalised (unless strength != 0). So for instance in the electric case the source strength is 1 A and its length is 1 m. So the electric field could also be written as [V/(A.m2)]. The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed. #### See also: **fem** Electromagnetic frequency-domain response. tem Electromagnetic time-domain response. #### **Examples** ``` >>> import numpy as np >>> from empymod import bipole >>> # x-directed bipole source: x0, x1, y0, y1, z0, z1 >>> src = [-50, 50, 0, 0, 100, 100] ``` ``` >>> # x-directed dipole source-array: x, y, z, azimuth, dip >>> rec = [np.arange(1, 11) *500, np.zeros(10), 200, 0, 0] >>> # layer boundaries >>> depth = [0, 300, 1000, 1050] >>> # layer resistivities \rightarrow \rightarrow res = [1e20, .3, 1, 50, 1] >>> # Frequency >>> freq = 1 >>> # Calculate electric field due to an electric source at 1 Hz. >>> # [msrc = mrec = True (default)] >>> EMfield = bipole(src, rec, depth, res, freq, verb=4) :: empymod START :: depth [m]: 0 300 1000 1050 [Ohm.m] : 1E+20 0.3 1 50 1 res [-]: 1 1 1 1 1 aniso [-]: 1 1 1 1 1 epermH [-]: 1 1 1 1 1 epermV [-]: 1 1 1 1 1 mpermH mpermV [-]: 1 1 1 1 1 : Fast Hankel Transform Hankel > Filter : Key 201 (2009) : None Hankel Opt. : None (all vectorized) Loop over : 1 bipole(s) Source(s) : 1 (as dipole) > intpts > length [m] : 100 [m] : > x_c [m] : 0 > y_c [m] : 100 > z_c > azimuth [°] : 0 [°]: 0 > dip Receiver(s) : 10 dipole(s) [m] : 500 - 5000 : 10 [min-max; #] : 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 [m] : 0 - 0 : 10 [min-max; #] : 00000000000 [m] : 200 > 7. 0 - 0 : 10 [min-max; #] > azimuth [°] : 0 0 0 0 0 0 0 0 0 0 - 0 : 10 [min-max; #] > dip 0 0 0 0 0 0 0 0 0 : 11 Required ab's :: empymod END; runtime = 0:00:00.022349 :: 1 kernel call(s) >>> print (EMfield) 1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j -3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j 1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j 1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j 6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j] ``` empymod.model.dipole (src, rec, depth, res, freqtime, signal=None, ab=11, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, xdirect=True, ht='fht', htarg=None, ft='sin', ftarg=None, opt=None, loop=None, verb=2) Return the electromagnetic field due to a dipole source. Calculate the electromagnetic frequency- or time-domain field due to infinitesimal small electric or magnetic dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well as all receivers are at
the same depth. Use the functions bipole to calculate dipoles with arbitrary angles or bipoles of finite length and arbitrary angle. The function *dipole* could be replaced by *bipole* (all there is to do is translate *ab* into *msrc*, *mrec*, *azimuth*'s and *dip*'s). However, *dipole* is kept separately to serve as an example of a simple modelling routine that can serve as a template. Parameters src, rec: list of floats or arrays Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can be arrays, z is a single value. The x- and y-coordinates must have the same dimension. depth: list Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity). res: array_like Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1. freqtime: array_like Frequencies f(Hz) if signal == None, else times t(s). **signal** : {None, 0, 1, -1}, optional #### Source signal, default is None: • None: Frequency-domain response • -1 : Switch-off time-domain response • 0 : Impulse time-domain response • +1 : Switch-on time-domain response ab: int, optional Source-receiver configuration, defaults to 11. | | | electric source | | | magnetic source | | | |----------|---|-----------------|----|----|-----------------|----|----| | | | X | y | Z | X | y | Z | | electric | X | 11 | 12 | 13 | 14 | 15 | 16 | | | y | 21 | 22 | 23 | 24 | 25 | 26 | | receiver | Z | 31 | 32 | 33 | 34 | 35 | 36 | | magneti | | 41 | 42 | 43 | 44 | 45 | 46 | | magneti | y | 51 | 52 | 53 | 54 | 55 | 56 | | receiver | Z | 61 | 62 | 63 | 64 | 65 | 66 | aniso: array_like, optional Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones. **epermH**, **epermV** : array_like, optional Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH = #epermV = #res. Default is ones. mpermH, mpermV: array_like, optional Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH = #mpermV = #res. Default is ones. #### xdirect: bool, optional If True and source and receiver are in the same layer, the direct field is calculated analytically in the frequency domain, if False it is calculated in the wavenumber domain. Defaults to True. #### ht: {'fht', 'qwe'}, optional Flag to choose either the *Fast Hankel Transform* (FHT) or the *Quadrature-With-Extrapolation* (QWE) for the Hankel transform. Defaults to 'fht'. htarg: str or filter from empymod.filters or array_like, optional #### Depends on the value for ht: - If *ht* = 'fht': array containing: [filter, pts_per_dec]: - filter: string of filter name in empymod.filters or the method itself. (default: empymod.filters.key_201_2009()) - pts_per_dec: points per decade (only relevant if spline=True) # **If none, standard lagged convolution is used.** (default: None) - If ht = 'qwe': array containing: [rtol, atol, nquad, maxint, pts_per_dec]: - rtol: relative tolerance (default: 1e-12) - atol: absolute tolerance (default: 1e-30) - nquad: order of Gaussian quadrature (default: 51) - maxint: maximum number of partial integral intervals (default: 40) - pts_per_dec: points per decade (only relevant if opt='spline') (default: 80) All are optional, you only have to maintain the order. To only change *nquad* to 11 and use the defaults otherwise, you can provide htarg=['', '', 11]. ft: {'sin', 'cos', 'qwe', 'fftlog'}, optional Only used if *signal*!= None. Flag to choose either the Sine- or Cosine-Filter, the Quadrature-With-Extrapolation (QWE), or FFTLog for the Fourier transform. Defaults to 'sin'. ftarg: str or filter from empymod.filters or array_like, optional #### Only used if *signal* !=None. Depends on the value for *ft*: - If ft = `sin' or 'cos': array containing: [filter, pts_per_dec]: - filter: string of filter name in empymod.filters or the filter method itself. (Default: empymod.filters.key_201_CosSin_2012()) - pts_per_dec: points per decade. If none, standard lagged convolution is used. (Default: None) - If ft = `qwe': array containing: [rtol, atol, nquad, maxint, pts_per_dec]: - rtol: relative tolerance (default: 1e-8) - atol: absolute tolerance (default: 1e-20) - nquad: order of Gaussian quadrature (default: 21) - maxint: maximum number of partial integral intervals (default: 200) - pts_per_dec: points per decade (only relevant if spline=True) (default: 20) All are optional, you only have to maintain the order. To only change *nquad* to 11 and use the defaults otherwise, you can provide ftarg=['', '', 11]. - If ft = 'fftlog': array containing: [pts_per_dec, add_dec, q]: - pts_per_dec: sampels per decade (default: 10) - add_dec: additional decades [left, right] (default: [-2, 1]) - q: exponent of power law bias (default: 0); $-1 \le q \le 1$ All are optional, you only have to maintain the order. To only change add_dec to [-1, 1] and use the defaults otherwise, you can provide ftarg=['', [-1, 1]]. opt: {None, 'parallel', 'spline'}, optional #### **Optimization flag. Defaults to None:** - None: Normal case, no parallelization nor interpolation is used. - If 'parallel', the package *numexpr* is used to evaluate the most expensive statements. Always check if it actually improves performance for a specific problem. It can speed up the calculation for big arrays, but will most likely be slower for small arrays. It will use all available cores for these specific statements, which all contain *Gamma* in one way or another, which has dimensions (#frequencies, #offsets, #layers, #lambdas), therefore can grow pretty big. The module *numexpr* uses by default all available cores up to a maximum of 8. You can change this behaviour to your desired number of threads *nthreads* with *numexpr.set_num_threads(nthreads)*. - If 'spline', the *lagged convolution* or *splined* variant of the FHT or the *splined* version of the QWE are used. Use with caution and check with the non-spline version for a specific problem. (Can be faster, slower, or plainly wrong, as it uses interpolation.) If spline is set it will make use of the parameter pts_per_dec that can be defined in htarg. If pts_per_dec is not set for FHT, then the *lagged* version is used, else the *splined*. The option 'parallel' only affects speed and memory usage, whereas 'spline' also affects precision! Please read the note in the *README* documentation for more information. **loop**: {None, 'freq', 'off'}, optional Define if to calculate everything vectorized or if to loop over frequencies ('freq') or over offsets ('off'), default is None. It always loops over frequencies if ht = 'qwe' or if opt = 'spline'. Calculating everything vectorized is fast for few offsets OR for few frequencies. However, if you calculate many frequencies for many offsets, it might be faster to loop over frequencies. Only comparing the different versions will yield the answer for your specific problem at hand! **verb**: {0, 1, 2, 3, 4}, optional #### Level of verbosity, default is 2: - 0: Print nothing. - 1: Print warnings. - 2: Print additional runtime and kernel calls - 3: Print additional start/stop, condensed parameter information. - 4: Print additional full parameter information **Returns** EM: ndarray, (nfreq, nrec, nsrc) #### Frequency- or time-domain EM field (depending on signal): - If rec is electric, returns E [V/m]. - If rec is magnetic, returns B [T] (not H [A/m]!). In the case of the impulse time-domain response, the unit is further divided by seconds [1/s]. However, source and receiver are normalised. So for instance in the electric case the source strength is 1 A and its length is 1 m. So the electric field could also be written as [V/(A.m2)]. The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed. #### See also: bipole Electromagnetic field due to an electromagnetic source. **fem** Electromagnetic frequency-domain response. tem Electromagnetic time-domain response. #### **Examples** ``` >>> import numpy as np >>> from empymod import dipole >>> src = [0, 0, 100] >>> rec = [np.arange(1, 11)*500, np.zeros(10), 200] >>> depth = [0, 300, 1000, 1050] >>> res = [1e20, .3, 1, 50, 1] >>> EMfield = dipole(src, rec, depth, res, freqtime=1, verb=0) >>> print(EMfield) [1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j -3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j 1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j 1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j 6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.322666000e-13j] ``` Return the frequency-domain EM field due to a dipole source. This is a shortcut for frequency-domain modelling using *dipole* (mainly for legacy reasons). See *dipole* for info and a description of input and output parameters. Only difference is that *frequency* here corresponds to *freqtime* in *dipole*. #### See also: ``` dipole EM field due to an EM source (dipole-dipole). bipole EM field due to an EM source (bipole-bipole). ``` #### **Examples** ``` >>> import numpy as np >>> from empymod import frequency >>> src = [0, 0, 100] >>> rec = [np.arange(1, 11) *500, np.zeros(10), 200] >>> depth = [0, 300, 1000, 1050] >>> res = [1e20, .3, 1, 50, 1] >>> EMfield = frequency(src, rec, depth, res, freq=1, verb=0) >>> print (EMfield) [1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j -3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j 1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j 1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j 6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j] ``` ``` empymod.model.time (src, rec, depth, res, time, ab=11, signal=0, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, xdirect=True, ht='fht', htarg=None, ft='sin', ftarg=None, opt=None, loop='off', verb=2) Return the time-domain EM field due to a dipole source. ``` This is a shortcut for time-domain modelling using *dipole* (mainly for legacy reasons). See *dipole* for info and a description of input and output parameters. Only difference is that
time here corresponds to *freqtime* in *dipole*. #### See also: ``` dipole EM field due to an EM source (dipole-dipole). bipole EM field due to an EM source (bipole-bipole). ``` #### **Examples** ``` >>> import numpy as np >>> from empymod import time >>> src = [0, 0, 100] >>> rec = [np.arange(1, 11) *500, np.zeros(10), 200] >>> depth = [0, 300, 1000, 1050] >>> res = [1e20, .3, 1, 50, 1] >>> EMfield = time(src, rec, depth, res, time=1, verb=0) >>> print(EMfield) [4.23754930e-11 3.13805193e-11 1.98884433e-11 1.14387827e-11 6.34605628e-12 3.54905259e-12 2.03906739e-12 1.20569287e-12 7.31746271e-13 4.55825907e-13] ``` ``` empymod.model.gpr(src, rec, depth, res, fc=250, ab=11, gain=None, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, xdirect=True, ht='fht', htarg=None, opt=None, loop='off', verb=2) Return the Ground-Penetrating Radar signal. ``` #### THIS FUNCTION IS IN DEVELOPMENT, USE WITH CAUTION. Or in other words it is merely an example how one could calculate the GPR-response. However, the currently included *FHT* and *QWE* struggle for these high frequencies, and another Hankel transform has to be included to make GPR work properly (e.g. *scipy.integrate.quad*). - QWE is slow, but does a pretty good job except for very short offsets: only direct wave for offset < 0.1 m, triangle-like noise at later times. - •*FHT* is fast. Airwave, direct wave and first reflection are well visible, but afterwards it is very noisy. A lot is still hard-coded in this routine, for instance the frequency-range used to calculate the response. For input parameters see *frequency*, except for: ``` Parameters fc: float ``` Centre frequency of GPR-signal (MHz). Sensible values are between 10 MHz and 3000 MHz. gain: float Power of gain function. If None, no gain is applied. **Returns** t : array Times (s) gprEM: ndarray GPR response empymod.model.wavenumber (src, rec, depth, res, freq, wavenumber, ab=11, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, xdi-rect=True.verb=2) Return the electromagnetic wavenumber-domain field. Calculate the electromagnetic wavenumber-domain field due to infinitesimal small electric or magnetic dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well as all receivers are at the same depth. Parameters src, rec: list of floats or arrays Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can be arrays, z is a single value. The x- and y-coordinates must have the same dimension. The x- and y-coordinates only matter for the angle-dependent factor. depth : list Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity). res : array_like Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1. freq: array_like Frequencies f (Hz), used to calculate etaH/V and zetaH/V. wavenumber : array Wavenumbers lambda (1/m) ab: int, optional Source-receiver configuration, defaults to 11. | | | electric source | | | magnetic source | | | |----------|---|-----------------|----|----|-----------------|----|----| | | | X | y | Z | X | y | Z | | electric | X | 11 | 12 | 13 | 14 | 15 | 16 | | Ciccuite | y | 21 | 22 | 23 | 24 | 25 | 26 | | receiver | Z | 31 | 32 | 33 | 34 | 35 | 36 | | magneti | | 41 | 42 | 43 | 44 | 45 | 46 | | magneti | y | 51 | 52 | 53 | 54 | 55 | 56 | | receiver | Z | 61 | 62 | 63 | 64 | 65 | 66 | aniso: array_like, optional Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones. #### epermH, epermV: array_like, optional Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH = #epermV = #res. Default is ones. #### mpermH, mpermV: array_like, optional Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH = #mpermV = #res. Default is ones. #### xdirect: bool, optional If True and source and receiver are in the same layer, the direct field is calculated analytically in the frequency domain, if False it is calculated in the wavenumber domain. Defaults to True. #### **verb**: {0, 1, 2, 3, 4}, optional #### Level of verbosity, default is 2: - 0: Print nothing. - 1: Print warnings. - 2: Print additional runtime and kernel calls - 3: Print additional start/stop, condensed parameter information. - 4: Print additional full parameter information #### Returns PJ0, PJ1: array #### Wavenumber-domain EM responses: - PJ0: Wavenumber-domain solution for the kernel with a Bessel function of the first kind of order zero. - PJ1: Wavenumber-domain solution for the kernel with a Bessel function of the first kind of order one. #### See also: dipole Electromagnetic field due to an electromagnetic source (dipoles). bipole Electromagnetic field due to an electromagnetic source (bipoles). **fem** Electromagnetic frequency-domain response. tem Electromagnetic time-domain response. #### **Examples** ``` >>> import numpy as np >>> from empymod.model import wavenumber >>> src = [0, 0, 100] >>> rec = [5000, 0, 200] >>> depth = [0, 300, 1000, 1050] \rightarrow \rightarrow res = [1e20, .3, 1, 50, 1] >>> freq = 1 >>> wavenrs = np.logspace(-3.7, -3.6, 10) >>> PJ0, PJ1 = wavenumber(src, rec, depth, res, freq, wavenrs, verb=0) >>> print (PJ0) [-1.02638329e-08 +4.91531529e-09j -1.05289724e-08 +5.04222413e-09j -1.08009148e-08 +5.17238608e-09j -1.10798310e-08 +5.30588284e-09j -1.13658957e-08 +5.44279805e-09j -1.16592877e-08 +5.58321732e-09j -1.19601897e-08 +5.72722830e-09j -1.22687889e-08 +5.87492067e-09j -1.25852765e-08 +6.02638626e-09j -1.29098481e-08 +6.18171904e-09j] >>> print (PJ1) [1.79483705e-10 -6.59235332e-10j 1.88672497e-10 -6.93749344e-10j 1.98325814e-10 -7.30068377e-10j 2.08466693e-10 -7.68286748e-10j 2.19119282e-10 -8.08503709e-10j 2.30308887e-10 -8.50823701e-10j 2.42062030e-10 -8.95356636e-10j 2.54406501e-10 -9.42218177e-10j 2.67371420e-10 -9.91530051e-10j 2.80987292e-10 -1.04342036e-09j] ``` empymod.model.fem(ab, off, angle, zsrc, zrec, lsrc, lrec, depth, freq, etaH, etaV, zetaH, zetaV, xdirect, isfullspace, ht, htarg, use_spline, use_ne_eval, msrc, mrec, loop_freq, loop_off, conv=True) Return the electromagnetic frequency-domain response. This function is called from one of the above modelling routines. No input-check is carried out here. See the main description of model for information regarding input and output parameters. This function can be directly used if you are sure the provided input is in the correct format. This is useful for inversion routines and similar, as it can speed-up the calculation by omitting input-checks. ``` empymod.model.tem(fEM, off, freq, time, signal, ft, ftarg, conv=True) ``` Return the time-domain response of the frequency-domain response fEM. This function is called from one of the above modelling routines. No input-check is carried out here. See the main description of model for information regarding input and output parameters. This function can be directly used if you are sure the provided input is in the correct format. This is useful for inversion routines and similar, as it can speed-up the calculation by omitting input-checks. # kernel - Kernel calculation Kernel of *empymod*, calculates the wavenumber-domain electromagnetic response. Plus analytical, frequency-domain full- and half-space solutions. The functions 'wavenumber', 'angle_factor', 'fullspace', 'greenfct', 'reflections', and 'fields' are based on source files (specified in each function) from the source code distributed with [Hunziker_et_al_2015], which can be found at software.seg.org/2015/0001. These functions are (c) 2015 by Hunziker et al. and the Society of Exploration Geophysicists, http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the root directory for more information regarding the involved licenses. ``` empymod.kernel.wavenumber (zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect, msrc, mrec, use_ne_eval) ``` 24 Chapter 2. Code Calculate wavenumber domain solution. Return the wavenumber domain solutions PJ0, PJ1, and PJ0b, which have to be transformed with a Hankel transform to the frequency domain. PJ0/PJ0b and PJ1 have to be transformed with Bessel functions of order 0 (J_0) and 1 (J_1) , respectively. This function corresponds loosely to equations 105–107, 111–116, 119–121, and 123–128 in [Hunziker_et_al_2015], and equally loosely to the file kxwmod.c. [Hunziker_et_al_2015] uses Bessel functions of orders 0, 1, and 2 (J_0, J_1, J_2) . The implementations of the Fast Hankel Transform and the Quadrature-with-Extrapolation in transform are set-up with Bessel functions of order 0 and 1 only. This is achieved by applying the recurrence formula $$J_2(kr) = \frac{2}{kr}J_1(kr) - J_0(kr)$$. **Note:** *PJ0* and *PJ0b* could theoretically be added here into one, and then be transformed in one go. However, *PJ0b* has to be multiplied by *factAng* later. This has to be done after the Hankel transform for methods which make use of spline interpolation, in order to work for offsets that are not in line with each other. This function is called from one of the Hankel functions in transform. Consult the modelling routines in model for a description of the input and output parameters. If you are solely interested in the wavenumber-domain solution you can call this function directly. However, you have to make sure all input arguments are correct, as no checks are carried out here. empymod.kernel.angle_factor(angle, ab, msrc, mrec) Return the angle-dependent factor. The whole calculation in the wavenumber domain is only a function of the distance between the source and the receiver, it is independent of the angel. The angle-dependency is this factor, which can be applied to the corresponding parts in the wavenumber or in the frequency domain. The angle_factor corresponds to the sine and cosine-functions in Eqs 105-107, 111-116, 119-121, 123-128. This function is called from one of the
Hankel functions in transform. Consult the modelling routines in model for a description of the input and output parameters. empymod.kernel.fullspace (off, angle, zsrc, zrec, etaH, etaV, zetaH, zetaV, ab, msrc, mrec) Analytical full-space solutions in the frequency domain. $$\hat{G}^{ee}_{\alpha\beta}, \hat{G}^{ee}_{3\alpha}, \hat{G}^{ee}_{33}, \hat{G}^{em}_{\alpha\beta}, \hat{G}^{em}_{\alpha3}$$ This function corresponds to equations 45–50 in [Hunziker_et_al_2015], and loosely to the corresponding files Gin11.F90, Gin12.F90, Gin13.F90, Gin22.F90, Gin23.F90, Gin31.F90, Gin32.F90, Gin32.F90, Gin33.F90, Gin41.F90, Gin42.F90, Gin43.F90, Gin51.F90, Gin52.F90, Gin53.F90, Gin61.F90, and Gin62.F90. This function is called from one of the modelling routines in model. Consult these modelling routines for a description of the input and output parameters. empymod.kernel.greenfct(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect, msrc, mrec, use ne eval) Calculate Green's function for TM and TE. $$\tilde{g}_{hh}^{tm}, \tilde{g}_{hz}^{tm}, \tilde{g}_{zh}^{tm}, \tilde{g}_{zz}^{tm}, \tilde{g}_{zz}^{te}, \tilde{g}_{hh}^{te}, \tilde{g}_{zz}^{te}$$ This function corresponds to equations 108–110, 117/118, 122; 89–94, A18–A23, B13–B15; 97–102 A26–A31, and B16–B18 in [Hunziker_et_al_2015], and loosely to the corresponding files Gamma.F90, Wprop.F90, Ptotalx.F90, Ptotalxm.F90, Ptotaly.F90, Ptotaly.F90, and Ptotalzm.F90. The Green's functions are multiplied according to Eqs 105-107, 111-116, 119-121, 123-128; with the factors inside the integrals. This function is called from the function kernel.wavenumber. empymod.kernel.reflections (depth, e_zH, Gam, lrec, lsrc, use_ne_eval) Calculate Rp, Rm. $$R_n^{\pm}, \bar{R}_n^{\pm}$$ This function corresponds to equations 64/65 and A-11/A-12 in [Hunziker_et_al_2015], and loosely to the corresponding files Rmin.F90 and Rplus.F90. This function is called from the function kernel.greenfct. empymod.kernel.fields (depth, Rp, Rm, Gam, lrec, lsrc, zsrc, ab, TM, use_ne_eval) Calculate Pu+, Pu-, Pd+, Pd-. $$P_s^{u\pm}, P_s^{d\pm}, \bar{P}_s^{u\pm}, \bar{P}_s^{d\pm}; P_{s-1}^{u\pm}, P_n^{u\pm}, \bar{P}_{s-1}^{u\pm}, \bar{P}_n^{u\pm}; P_{s+1}^{d\pm}, P_n^{d\pm}, \bar{P}_{s+1}^{d\pm}, \bar{P}_n^{d\pm}$$ This function corresponds to equations 81/82, 95/96, 103/104, A-8/A-9, A-24/A-25, and A-32/A-33 in [Hunziker_et_al_2015], and loosely to the corresponding files Pdownmin.F90, Pdownplus.F90, Pupmin.F90, and Pdownmin.F90. This function is called from the function kernel.greenfct. ``` empymod.kernel.halfspace(xco, yco, zsrc, zrec, res, freq, aniso=1, ab=11) ``` Return frequency-space domain VTI half-space solution. Calculates the frequency-space domain electromagnetic response for a half-space below air using the diffusive approximation, as given in [Slob_et_al_2010]. This routine is not strictly part of *empymod* and not used by it. However, it can be useful to compare the code to the analytical solution. There are a few known typos in the equations of [Slob_et_al_2010]. Write the authors to receive an updated version! This could be integrated into *empymod* by checking if the top-layer is a very resistive layer, hence air, and the rest is a half-space, and then calling this function instead of *wavenumber*. (Similar to the way *fullspace* is incorporated if all layer parameters are identical.) The time-space domain solution could be implemented as well. ``` Parameters xco, yco: array ``` Inline and crossline coordinates (m) zsrc, zrec: float Source and receiver depth (m) res: float or array Half-space resistivity (Ohm.m) freq: float Frequency (Hz) aniso: float, optional Anisotropy (-), default = 1 ab: int, optional Src-Rec config, default = 11; {11, 12, 13, 21, 22, 23, 31, 32, 33} **Returns** EM half-space solution #### **Examples** ``` >>> from empymod.kernel import halfspace >>> EM = halfspace(1000, 0, 10, 1, 10, 1) >>> print('HS response : ', EM) HS response : (3.02186073352e-09-3.87322421836e-10j) ``` ### transform - Hankel and Fourier Transforms Methods to carry out the required Hankel transform from wavenumber to frequency domain and Fourier transform from frequency to time domain. The functions for the QWE and FHT Hankel and Fourier transforms are based on source files (specified in each function) from the source code distributed with [Key_2012], which can be found at software.seg.org/2012/0003. These functions are (c) 2012 by Kerry Key and the Society of Exploration Geophysicists, http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the root directory for more information regarding the involved licenses. empymod.transform.**fht** (zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect, fhtarg, use_spline, use_ne_eval, msrc, mrec) Hankel Transform using the Fast Hankel Transform. The Fast Hankel Transform is a Digital Filter Method, introduced to geophysics by [Gosh_1971], and made popular and wide-spread by [Anderson_1975], [Anderson_1979], [Anderson_1982]. This implementation of the FHT follows [Key_2012], equation 6. Without going into the mathematical details (which can be found in any of the above papers) and following [Key_2012], the FHT method rewrites the Hankel transform of the form $$F(r) = \int_0^\infty f(\lambda) J_v(\lambda r) d\lambda$$ as $$F(r) = \sum_{i=1}^{n} f(b_i/r)h_i/r ,$$ where h is the digital filter. The Filter abscissae b is given by $$b_i = \lambda_i r = e^{ai}, \qquad i = -l, -l+1, \cdots, l,$$ with l = (n-1)/2, and a is the spacing coefficient. This function is loosely based on get_CSEM1D_FD_FHT.m from the source code distributed with [Key_2012]. The function is called from one of the modelling routines in model. Consult these modelling routines for a description of the input and output parameters. Returns fEM: array Returns frequency-domain EM response. kcount: int Kernel count. For FHT, this is 1. conv: bool Only relevant for QWE, not for FHT. empymod.transform.hqwe (zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect, qweargs, use_spline, use_ne_eval, msrc, mrec) Hankel Transform using Quadrature-With-Extrapolation. *Quadrature-With-Extrapolation* was introduced to geophysics by [Key_2012]. It is one of many so-called ISE methods to solve Hankel Transforms, where ISE stands for Integration, Summation, and Extrapolation. Following [Key_2012], but without going into the mathematical details here, the QWE method rewrites the Hankel transform of the form $$F(r) = \int_0^\infty f(\lambda) J_v(\lambda r) d\lambda$$ as a quadrature sum which form is similar to the FHT (equation 15), $$F_i \approx \sum_{j=1}^m f(x_j/r)w_j g(x_j) = \sum_{j=1}^m f(x_j/r)\hat{g}(x_j)$$, but with various bells and whistles applied (using the so-called Shanks transformation in the form of a routine called ϵ -algorithm ([Shanks_1955], [Wynn_1956]; implemented with algorithms from [Trefethen_2000] and [Weniger_1989]). This function is based on get_CSEM1D_FD_QWE.m, qwe.m, and getBesselWeights.m from the source code distributed with [Key_2012]. The function is called from one of the modelling routines in model. Consult these modelling routines for a description of the input and output parameters. **Returns fEM**: array Returns frequency-domain EM response. kcount: int Kernel count. conv: bool If true, QWE converged. If not, maxint might have to be set higher. empymod.transform.fft (fEM, time, freq, ftarg) Fourier Transform using a Cosine- or a Sine-filter. It follows the Filter methodology [Anderson_1975], see fht for more information. The function is called from one of the modelling routines in model. Consult these modelling routines for a description of the input and output parameters. This function is based on get_CSEM1D_TD_FHT.m from the source code distributed with [Key_2012]. Returns tEM: array Returns time-domain EM response of fEM for given time. conv: bool Only relevant for QWE, not for FFT. empymod.transform.fqwe(fEM, time, freq, qweargs) Fourier Transform using Quadrature-With-Extrapolation. It follows the QWE methodology [Key_2012] for the Hankel transform, see hqwe for more information. The function is called from one of the modelling routines in model. Consult these modelling routines for a description of the input and output parameters. This function is based on get_CSEM1D_TD_QWE.m from the source code distributed with [Key_2012]. Returns tEM: array Returns time-domain EM response of fEM for given time. conv: bool If true, QWE converged. If not, maxint might have to be set higher. ``` empymod.transform.fftlog(fEM, time, freq, ftarg) ``` Fourier Transform using FFTLog. FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT. FFTLog was presented in Appendix B of [Hamilton_2000] and published at http://casa.colorado.edu/~ajsh/FFTLog>. This function uses a simplified version of *pyfftlog*, which is a python-version of *FFTLog*. For more details regarding *pyfftlog* see https://github.com/prisae/pyfftlog>. Not the full flexibility of *FFTLog* is available here: Only the logarithmic FFT (*fftl* in *FFTLog*), not the Hankel transform (*fht* in *FFTLog*). Furthermore, the following parameters are fixed: ``` •mu = 0.5 (sine-transform) ``` •kr = 1 (initial value) • kropt = 1 (silently adjusts kr) •dir = 1 (forward) Furthermore, q is restricted to $-1 \le q \le 1$. I am trying to get FFTLog into scipy. If this happens the current implementation will be replaced by the scipy.fftpack.fftlog-version. The function is called from one of the modelling routines in model. Consult these modelling routines for a description of the input and output parameters. Returns tEM: array Returns time-domain EM response of fEM for given time. conv: bool Only relevant for QWE, not for FFTLog. empymod.transform.**qwe** (*rtol*, *atol*, *maxint*, *inp*, *intervals*, *lambd=None*, *off=None*,
factAng=None) Quadrature-With-Extrapolation. This is the kernel of the QWE method, used for the Hankel (*hqwe*) and the Fourier (*fqwe*) Transforms. See *hqwe* for an extensive description. This function is based on *qwe.m* from the source code distributed with [Key_2012]. ``` empymod.transform.get_spline_values(filt, inp, nr_per_dec=None) ``` Return required calculation points. ``` \verb|empymod.transform.fhti| (\textit{rmin}, \textit{rmax}, \textit{n}, \textit{q}) \\ ``` Return parameters required for FFTLog. # filters - Digital Filters for FHT Filters for the Fast Hankel Transform (FHT, [Anderson_1982]) and the Fourier Sine and Cosine Transforms [Anderson_1975]. To calculate the fhtfilter.factor I used ``` np.around(np.average(fhtfilter.base[1:]/fhtfilter.base[:-1]), 15) ``` The filters $kong_61_2007$ and $kong_241_2007$ from $[Kong_2007]$, and key_101_2009 , key_201_2009 , key_401_2009 , $key_81_CosSin_2009$, $key_81_CosSin_2009$, and $key_601_CosSin_2009$ from $[Key_2009]$ are taken from DIPOLE1D, $[Key_2009]$, which can be downloaded at marineemlab.ucsd.edu/Projects/Occam/1DCSEM. DIPOLE1D is distributed under the license GNU GPL version 3 or later. Kerry Key gave his written permission to re-distribute the filters under the Apache License, Version 2.0 (email from Kerry Key to Dieter Werthmüller, 21 November 2016). The filters anderson_801_1982 from [Anderson_1982] and key_51_2012, key_101_2012, key_201_2012, key_101_CosSin_2012, and key_201_CosSin_2012, all from [Key_2012], are taken from the software distributed with [Key_2012] and available at software.seg.org/2012/0003. These filters are distributed under the SEG license. ``` {\bf class} \; {\tt empymod.filters.DigitalFilter} \; ({\it name}) ``` Simple Class for Digital Filters. ``` empymod.filters.anderson_801_1982() ``` Anderson 801: [Anderson_1982]. Anderson 801 pt filter, as published in [Anderson_1982]; taken from file wa801Hankel.txt from [Key_2012], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt. ``` empymod.filters.key_101_2009() Key 101 2009: [Key_2009]. ``` Key 101 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.key_101_2012() Key 101 2012: [Key 2012]. ``` Key 101 pt filter, taken from file *kk101Hankel.txt* from [*Key_2012*], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt. ``` empymod.filters.key_101_CosSin_2012() Key 101 CosSin 2012: [Key_2012]. ``` Key 101 pt filter, taken from file *kk101CosSin.txt* from [Key_2012], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt. ``` empymod.filters.key_201_2009() Key 201 2009: [Key 2009]. ``` Key 201 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.key_201_2012() Key 201 2012: [Key 2012]. ``` Key 201 pt filter, taken from file *kk201Hankel.txt* from [*Key_2012*], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt. ``` empymod.filters.key_201_CosSin_2012() Key 201 CosSin 2012: [Key_2012]. ``` Key 201 pt filter, taken from file *kk201CosSin.txt* from [*Key_2012*], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt. ``` empymod.filters.key_241_CosSin_2009() Key 241 CosSin 2009: [Key_2009]. ``` Key 241 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.key_401_2009() Key 401 2009: [Key_2009]. ``` Key 401 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.key_51_2012() Key 51 2012: [Key_2012]. ``` Key 51 pt filter, taken from file *kk51Hankel.txt* from [*Key_2012*], published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt. ``` empymod.filters.key_601_CosSin_2009() Key 601 CosSin 2009: [Key_2009]. ``` Key 601 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.key_81_CosSin_2009() Key 81 CosSin 2009: [Key_2009]. ``` Key 81 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.kong_241_2007() Kong 241: [Kong_2007]. ``` Kong 241 pt filter, as published in [Kong_2007]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. ``` empymod.filters.kong_61_2007() Kong 61: [Kong_2007]. ``` Kong 61 pt filter, as published in [Kong_2007]; taken from file FilterModules.f90 from [Key_2009], available on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.org/licenses/LICENSE-2.0. #### utils - Utilites Utilities for *model* such as checking input parameters. ### This module consists of four groups of functions: - 0. General settings - 1. Class EMArray - 2. Input parameter checks for modelling - 3. Internal utilities ``` class empymod.utils.EMArray ``` Subclassing an ndarray: add amplitude <amp> and phase <pha>. 2.5. utils – Utilites 31 #### Parameters realpart: array - 1. Real part of input, if input is real or complex. - 2. Imaginary part of input, if input is pure imaginary. - 3. Complex input. In cases 2 and 3, *imagpart* must be None. #### imagpart: array, optional Imaginary part of input. Defaults to None. #### **Examples** #### **Attributes** | amp | (ndarray) Amplitude of the input data. | |-----|--| | pha | (ndarray) Phase of the input data, in degrees, lag-defined (increasing with increasing offset.) To get | | | lead-defined phases, multiply <i>imagpart</i> by -1 before passing through this function. | empymod.utils.check_time (time, signal, ft, ftarg, verb) Check time domain specific input parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. ``` Parameters time: array_like Times t (s). signal: {None, 0, 1, -1} ``` #### Source signal: - None: Frequency-domain response - -1 : Switch-off time-domain response - 0 : Impulse time-domain response - +1 : Switch-on time-domain response ``` ft: {'sin', 'cos', 'qwe', 'fftlog'} ``` Flag for Fourier transform, only used if *signal* != None. ftarg: str or filter from empymod.filters or array like, Only used if *signal* !=None. Depends on the value for *ft*: **verb**: {0, 1, 2, 3, 4} Level of verbosity. ``` Returns time: float Time, checked for size and assured min_time. freq: float Frequencies required for given times and ft-settings. ft, ftarg Checked if valid and set to defaults if not provided, checked with signal. empymod.utils.check_model (depth, res, aniso, epermH, epermV, mpermH, mpermV, verb) Check the model: depth and corresponding layer parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters depth: list Absolute layer interfaces z(m); #depth = #res - 1 (excluding +/- infinity). res: array_like Horizontal resistivities rho_h (Ohm.m); \#res = \#depth + 1. aniso: array_like Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. epermH, epermV: array like Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); \#\text{eperm} H = \#\text{eperm} V = \#\text{res}. mpermH, mpermV: array_like Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH = \#mpermV = \#res. verb: {0, 1, 2, 3, 4} Level of verbosity. Returns depth: array Depths of layer interfaces, adds -infty at beginning if not present. res: array As input, checked for size. aniso: array As input, checked for size. If None, defaults to an array of ones. epermH, epermV : array_like As input, checked for size. If None, defaults to an array of ones. mpermH, mpermV : array_like As input, checked for size. If None, defaults to an array of ones. isfullspace: bool If True, the model is a fullspace (res, aniso, epermH, epermV, mpermM, and mpermV are in all layers the same). ``` 2.5. utils – Utilites 33 ``` empymod.utils.check_frequency (freq, res, aniso, epermH, epermV, mpermH, mpermV, verb) Calculate frequency-dependent parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters freq: array_like Frequencies f (Hz). res: array like Horizontal resistivities rho_h (Ohm.m); \#res = \#depth + 1. aniso: array_like Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. epermH, epermV: array_like Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); \#epermH
= \#epermV = \#res. mpermH, mpermV: array like Relative horizontal/vertical magnetic permeabilities mu h/mu v (-); #mpermH = #mpermV = #res. verb: {0, 1, 2, 3, 4} Level of verbosity. Returns freq: float Frequency, checked for size and assured min_freq. etaH, etaV: array Parameters etaH/etaV, same size as provided resistivity. zetaH, zetaV : array Parameters zetaH/zetaV, same size as provided resistivity. empymod.utils.check_hankel(ht, htarg, verb) Check Hankel transform parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters ht: {'fht', 'qwe'} Flag to choose the Hankel transform. htarg: str or filter from empymod.filters or array like, Depends on the value for ht. verb: {0, 1, 2, 3, 4} Level of verbosity. Returns ht, htarg Checked if valid and set to defaults if not provided. empymod.utils.check_opt(opt, loop, ht, htarg, verb) Check optimization parameters. ``` 34 Chapter 2. Code for a detailed description of the input parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines ``` Parameters opt: {None, 'parallel', 'spline'} Optimization flag. loop : {None, 'freq', 'off'} Loop flag. ht: str Flag to choose the Hankel transform. htarg: array_like, Depends on the value for ht. verb: {0, 1, 2, 3, 4} Level of verbosity. Returns use_spline: bool Boolean if to use spline interpolation. use ne eval: bool Boolean if to use numexpr. loop_freq : bool Boolean if to loop over frequencies. loop_off : bool Boolean if to loop over offsets. empymod.utils.check_dipole(inp, name, verb) Check dipole parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters inp: list of floats or arrays Pole coordinates (m): [pole-x, pole-y, pole-z]. name : str, { 'src', 'rec' } Pole-type. verb: {0, 1, 2, 3, 4} Level of verbosity. Returns inp: list List of pole coordinates [x, y, z]. ninp: int Number of inp-elements empymod.utils.check_bipole(inp, name) Check di-/bipole parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters inp: list of floats or arrays Coordinates of inp (m): [dipole-x, dipole-y, dipole-z, azimuth, dip] or. [bipole- x0, bipole-x1, bipole-y0, bipole-y1, bipole-z0, bipole-z1]. ``` 2.5. utils – Utilites 35 ``` name : str, { 'src', 'rec' } Pole-type. Returns inp: list As input, checked for type and length. ninp: int Number of inp. ninpz: int Number of inp depths (ninpz is either 1 or ninp). isdipole: bool True if inp is a dipole. empymod.utils.check_ab(ab, verb) Check source-receiver configuration. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters ab: int Source-receiver configuration. verb: {0, 1, 2, 3, 4} Level of verbosity. Returns ab calc: int Adjusted source-receiver configuration using reciprocity. msrc, mrec: bool If True, src/rec is magnetic; if False, src/rec is electric. empymod.utils.get_abs (msrc, mrec, srcazm, srcdip, recazm, recdip, verb) Get required ab's for given angles. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters msrc, mrec: bool True if src/rec is magnetic, else False. srcazm, recazm: float Horizontal source/receiver angle (azimuth). srcdip, recdip : float Vertical source/receiver angle (dip). verb: {0, 1, 2, 3, 4} Level of verbosity. Returns ab_calc: array of int ab's to calculate for this bipole. empymod.utils.get_geo_fact (ab, srcazm, srcdip, recazm, recdip, msrc, mrec) Get required geometrical scaling factor for given angles. This check-function is called from one of the modelling routines in model. Consult these modelling routines ``` 36 Chapter 2. Code for a detailed description of the input parameters. ``` Parameters ab: int Source-receiver configuration. srcazm, recazm: float Horizontal source/receiver angle. srcdip, recdip : float Vertical source/receiver angle. Returns fact: float Geometrical scaling factor. empymod.utils.get_azm_dip(inp, iz, ninpz, intpts, isdipole, strength, name, verb) Get angles, interpolation weights and normalization weights. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters inp: list of floats or arrays Input coordinates (m): • [x0, x1, y0, y1, z0, z1] (bipole of finite length) • [x, y, z, azimuth, dip] (dipole, infinitesimal small) iz: int Index of current di-/bipole depth (-). ninpz: int Total number of di-/bipole depths (ninpz = 1 or npinz = nsrc) (-). intpts: int Number of integration points for bipole (-). isdipole: bool Boolean if inp is a dipole. strength: float, optional Source strength (A): • If 0, output is normalized to source and receiver of 1 m length, and source strength of 1 A. • If != 0, output is returned for given source and receiver length, and source strength. name : str, { 'src', 'rec' } Pole-type. verb: {0, 1, 2, 3, 4} Level of verbosity. ``` 2.5. utils – Utilites 37 **Returns tout**: list of floats or arrays azm: float or array of floats Dipole coordinates x, y, and z (m). Horizontal angle (azimuth). ``` dip: float or array of floats Vertical angle (dip). g_w: float or array of floats Factors from Gaussian interpolation. intpts: int As input, checked. inp_w: float or array of floats Factors from source/receiver length and source strength. empymod.utils.get_off_ang(src, rec, nsrc, nrec, verb) Get depths, offsets, angles, hence spatial input parameters. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters src, rec: list of floats or arrays Source/receiver dipole coordinates x, y, and z (m). nsrc, nrec: int Number of sources/receivers (-). verb: {0, 1, 2, 3, 4} Level of verbosity. Returns off: array of floats Offsets angle: array of floats Angles empymod.utils.get_layer_nr(inp, depth) Get number of layer in which inp resides. Note: If zinp is on a layer interface, the layer above the interface is chosen. This check-function is called from one of the modelling routines in model. Consult these modelling routines for a detailed description of the input parameters. Parameters inp: list of floats or arrays Dipole coordinates (m) depth: array Depths of layer interfaces. Returns linp: int or array_like of int Layer number(s) in which inp resides (plural only if bipole). zinp: float or array inp[2] (depths). empymod.utils.printstartfinish(verb, inp=None, kcount=None) Print start and finish with time measure and kernel count. empymod.utils.conv warning(conv, targ, name, verb) Print error if QWE did not converge at least once. ``` 38 Chapter 2. Code # $\mathsf{CHAPTER}\,3$ ### Indices and tables - genindex - modindex - search #### Bibliography - [Anderson_1975] Anderson, W.L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals: USGS Unnumbered Series; http://pubs.usgs.gov/unnumbered/70045426/report.pdf. - [Anderson_1979] Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering: Geophysics, 44, 1287–1305; DOI: 10.1190/1.1441007. - [Anderson_1982] Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM Trans. on Math. Softw. (TOMS), 8, 344–368; DOI: 10.1145/356012.356014. - [Gosh_1971] Ghosh, D. P., 1971, The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements: Geophysical Prospecting, 19, 192–217; DOI: 10.1111/j.1365-2478.1971.tb00593.x. - [Hamilton_2000] Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear power spectrum: Monthly Notices of the Royal Astronomical Society, 312, pages 257-284; DOI: 10.1046/j.1365-8711.2000.03071.x; Website of FFTLog: casa.colorado.edu/~ajsh/FFTLog. - [Hunziker_et_al_2015] Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80, F1–F18; DOI: 10.1190/geo2013-0411.1; Software: software.seg.org/2015/0001. - [Key_2009] Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers: Geophysics, 74, F9–F20; DOI: 10.1190/1.3058434. Software: marineemlab.ucsd.edu/Projects/Occam/1DCSEM. - [Key_2012] Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21–F30; DOI: 10.1190/GEO2011-0237.1; Software: software.seg.org/2012/0003. - [Kong_2007] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium: Geophysical Prospecting, 55, 83–89; DOI: 10.1111/j.1365-2478.2006.00585.x. - [Shanks_1955] Shanks, D., 1955, Non-linear transformations of divergent and slowly convergent sequences: Journal of Mathematics and Physics, 34, 1–42; DOI: 10.1002/sapm19553411. - [Slob_et_al_2010] Slob, E., J. Hunziker, and W. A. Mulder, 2010, Green's tensors for the diffusive electric field in a VTI half-space: PIER, 107, 1–20: DOI: 10.2528/PIER10052807. - [Talman_1978] Talman, J. D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables: Journal of Computational Physics, 29, pages 35-48; DOI: 10.1016/0021-9991(78)90107-9. - [Trefethen_2000] Trefethen, L. N., 2000, Spectral methods in MATLAB: Society for Industrial and Applied Mathematics (SIAM), volume 10 of Software, Environments, and Tools, chapter 12, page 129; DOI: 10.1137/1.9780898719598.ch12. - [Weniger_1989] Weniger, E. J.,
1989, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series: Computer Physics Reports, 10, 189–371; arXiv: abs/math/0306302. - [Wynn_1956] Wynn, P., 1956, On a device for computing the $e_m(S_n)$ tranformation: Math. Comput., 10, 91–96; DOI: 10.1090/S0025-5718-1956-0084056-6. 42 Bibliography ## Python Module Index #### е empymod,3 empymod.filters,29 empymod.kernel,24 empymod.model,11 empymod.transform,27 empymod.utils,31 44 Python Module Index ## Index | A anderson_801_1982() (in module empymod.filters), 30 angle_factor() (in module empymod.kernel), 25 B bipole() (in module empymod.model), 11 C check_ab() (in module empymod.utils), 36 check_bipole() (in module empymod.utils), 35 check_dipole() (in module empymod.utils), 35 check_frequency() (in module empymod.utils), 33 check_hankel() (in module empymod.utils), 34 | frequency() (in module empymod.model), 20 fullspace() (in module empymod.kernel), 25 G get_abs() (in module empymod.utils), 36 get_azm_dip() (in module empymod.utils), 37 get_geo_fact() (in module empymod.utils), 36 get_layer_nr() (in module empymod.utils), 38 get_off_ang() (in module empymod.utils), 38 get_spline_values() (in module empymod.transform), 29 gpr() (in module empymod.model), 21 greenfct() (in module empymod.kernel), 25 | |--|---| | check_model() (in module empymod.utils), 33 check_opt() (in module empymod.utils), 34 check_time() (in module empymod.utils), 32 conv_warning() (in module empymod.utils), 38 | H halfspace() (in module empymod.kernel), 26 hqwe() (in module empymod.transform), 27 | | DigitalFilter (class in empymod.filters), 30 dipole() (in module empymod.model), 16 | key_101_2009() (in module empymod.filters), 30 key_101_2012() (in module empymod.filters), 30 key_101_CosSin_2012() (in module empymod.filters), 30 key_201_2009() (in module empymod.filters), 30 | | EMArray (class in empymod.utils), 31 empymod (module), 3 empymod.filters (module), 29 empymod.kernel (module), 24 empymod.model (module), 11 empymod.transform (module), 27 empymod.utils (module), 31 | key_201_2012() (in module empymod.filters), 30 key_201_CosSin_2012() (in module empymod.filters), 30 key_241_CosSin_2009() (in module empymod.filters), 30 key_401_2009() (in module empymod.filters), 31 key_51_2012() (in module empymod.filters), 31 key_601_CosSin_2009() (in module empymod.filters), 31 key_81_CosSin_2009() (in module empymod.filters), 31 kong_241_2007() (in module empymod.filters), 31 kong_61_2007() (in module empymod.filters), 31 | | F | P | | fem() (in module empymod.model), 24
fft() (in module empymod.transform), 28 | printstartfinish() (in module empymod.utils), 38 | | fftlog() (in module empymod.transform), 29
fht() (in module empymod.transform), 27
fhti() (in module empymod.transform), 29
fields() (in module empymod.kernel), 26 | Q qwe() (in module empymod.transform), 29 | | fqwe() (in module empymod.transform), 28 | | #### R reflections() (in module empymod.kernel), 26 #### Τ tem() (in module empymod.model), 24 time() (in module empymod.model), 21 #### W wavenumber() (in module empymod.kernel), 24 wavenumber() (in module empymod.model), 22 46 Index