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Version: 1.3.0; Date: Mar 30, 2017

Manual for empymod, a one-dimensional, electromagnetic forward modeller in Python.

The electromagnetic python modeller empymod can model electric or magnetic responses due to a three-dimensional
electric or magnetic source in a layered-earth model with electric vertical isotropy (𝜌ℎ, 𝜆), electric permittivity (𝜖ℎ, 𝜖𝑣),
and magnetic permeability (𝜇ℎ, 𝜇𝑣), from very low frequencies (𝑓 → 0 Hz) to very high frequencies (𝑓 → GHz).

Contents: The latest version of this documentation can be found at https://empymod.readthedocs.io.
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CHAPTER 1

Installation & requirements

The easiest way to install the latest stable version of empymod is via conda:

> conda install -c prisae empymod

or via pip:

> pip install empymod

Alternatively, you can download the latest version from GitHub and either add the path to empymod to your python-
path variable, or install it in your python distribution via:

> python setup.py install

Required are python version 3.4 or higher and the modules NumPy and SciPy. If you want to run parts of the kernel in
parallel, the module numexpr is required additionally.

If you are new to Python I recommend using a Python distribution, which will ensure that all dependencies are met,
specifically properly compiled versions of NumPy and SciPy; I recommend using Anaconda (version 3.x; contin-
uum.io/downloads). If you install Anaconda you can simply start the Anaconda Navigator, add the channel prisae and
empymod will appear in the package list and can be installed with a click.

Usage

The main modelling routines is bipole, which can calculate the electromagnetic frequency- or time-domain field due to
arbitrary finite electric or magnetic bipole sources, measured by arbitrary finite electric or magnetic bipole receivers.
The model is defined by horizontal resistivity and anisotropy, horizontal and vertical electric permittivities and hor-
izontal and vertical magnetic permeabilities. By default, the electromagnetic response is normalized to source and
receiver of 1 m length, and source strength of 1 A.

A simple frequency-domain example, with most of the parameters left at the default value:

3
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>>> import numpy as np
>>> from empymod import bipole
>>> # x-directed bipole source: x0, x1, y0, y1, z0, z1
>>> src = [-50, 50, 0, 0, 100, 100]
>>> # x-directed dipole source-array: x, y, z, azimuth, dip
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200, 0, 0]
>>> # layer boundaries
>>> depth = [0, 300, 1000, 1050]
>>> # layer resistivities
>>> res = [1e20, .3, 1, 50, 1]
>>> # Frequency
>>> freq = 1
>>> # Calculate electric field due to an electric source at 1 Hz.
>>> # [msrc = mrec = True (default)]
>>> EMfield = bipole(src, rec, depth, res, freq, verb=4)
:: empymod START ::
~

depth [m] : 0 300 1000 1050
res [Ohm.m] : 1E+20 0.3 1 50 1
aniso [-] : 1 1 1 1 1
epermH [-] : 1 1 1 1 1
epermV [-] : 1 1 1 1 1
mpermH [-] : 1 1 1 1 1
mpermV [-] : 1 1 1 1 1
frequency [Hz] : 1
Hankel : Fast Hankel Transform

> Filter : Key 201 (2009)
> pts_per_dec : Defined by filter (lagged)

Hankel Opt. : None
Loop over : None (all vectorized)
Source(s) : 1 bipole(s)

> intpts : 1 (as dipole)
> length [m] : 100
> x_c [m] : 0
> y_c [m] : 0
> z_c [m] : 100
> azimuth [°] : 0
> dip [°] : 0

Receiver(s) : 10 dipole(s)
> x [m] : 500 - 5000 : 10 [min-max; #]

: 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
> y [m] : 0 - 0 : 10 [min-max; #]

: 0 0 0 0 0 0 0 0 0 0
> z [m] : 200
> azimuth [°] : 0
> dip [°] : 0

Required ab's : 11
~
:: empymod END; runtime = 0:00:00.005536 :: 1 kernel call(s)
~
>>> print(EMfield)
[ 1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j

-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

Frequency- and time-domain examples can be found in the prisae/empymod-notebooks-repository.
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More information and more examples can be found in the following articles (published or in preparation):

• prisae/empymod-geo2017

• prisae/empymod-tle2017 (doi: 10.1190/tle36040352.1)

Structure

• model.py: EM modelling routines.

• utils.py: Utilities for model such as checking input parameters.

• kernel.py: Kernel of empymod, calculates the wavenumber-domain electromagnetic response. Plus analytical,
frequency-domain full- and half-space solutions.

• transform.py: Methods to carry out the required Hankel transform from wavenumber to space domain and
Fourier transform from frequency to time domain.

• filters.py: Filters for the Fast Hankel Transform FHT [Anderson_1982], and the Fourier Sine and Cosine Trans-
forms [Anderson_1975].

Missing features

A list of things that should or could be added and improved:

• A cython, numba, or pure C/C++ implementation of the kernel and the transform modules. Maybe not worth it,
as it may improve speed, but decrease accessibility. Both at the same time would be nice. A fast C/C++-version
for calculations (inversions), and a Python-version to tinker with for interested folks. (Probably combined with
default parallelisation, removing the numexpr variant.)

• More modelling routines:

– Additional source-receiver arrangements (e.g. loops).

– Improve model.gpr.

– Load and save functions to store and load model information (resistivity model, acquisition parame-
ters, and modelling parameters) together with the modelling data.

• Abstraction of the code.

• GUI.

• Add a benchmark suite, e.g. http://asv.readthedocs.io, in addition to the testing suite.

• Add some clever checks, e.g. as in [Key_2012]: abort loops if the field is strongly attenuated.

• Module to create Hankel filters (nice to have addition, mainly for educational purposes).

Testing

The modeller comes with a test suite using pytest. If you want to run the tests, just install pytest and run it within the
empymod-top-directory.

1.2. Structure 5
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> conda install pytest
> # or
> pip install pytest
> # and then
> cd to/the/empymod/folder # Ensure you are in the right directory,
> ls -d */ # your output should look the same.
docs/ empymod/ tests/
> # pytest will find the tests, which are located in the tests-folder.
> # simply run
> pytest

It should run all tests successfully. Please let me know if not!

Note that installations of empymod via conda or pip do not have the test-suite included. To run the test-suite you must
download empymod from GitHub.

6 Chapter 1. Installation & requirements



CHAPTER 2

Info

Citation

I am in the process of publishing an article in Geophysics regarding empymod, and I will put the info here once it is a
reality. If you publish results for which you used empymod, please consider citing this article. Meanwhile, you could
cite the Geophysical Tutorial:

Werthmüller, D., 2017, Getting started with controlled-source electromagnetic 1D modeling: The Leading Edge, 36,
352-355; doi: 10.1190/tle36040352.1.

Also consider citing [Hunziker_et_al_2015] and [Key_2012], without which empymod would not exist. All releases
have a Zenodo-DOI, provided on the GitHub release-page.

License

Copyright 2016-2017 Dieter Werthmüller

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

See the LICENSE-file in the root directory for a full reprint of the Apache License.

Notice

This product includes software that was initially (till 01/2017) developed at The Mexican Institute of Petroleum IMP
(Instituto Mexicano del Petróleo, http://www.gob.mx/imp). The project was funded through The Mexican National

7

http://dx.doi.org/10.1190/tle36040352.1
https://github.com/prisae/empymod/releases
http://www.apache.org/licenses/LICENSE-2.0
http://www.gob.mx/imp


empymod Documentation, Release 1.3.0

Council of Science and Technology (Consejo Nacional de Ciencia y Tecnología, http://www.conacyt.mx).

This product is a derivative work of [Hunziker_et_al_2015] and [Key_2012], and their publicly available software:

1. Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse
isotropic medium: A new look at an old problem: Geophysics, 80, F1-F18; DOI: 10.1190/geo2013-0411.1;
Software: software.seg.org/2015/0001.

2. Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77, F21-F30; DOI:
10.1190/GEO2011-0237.1; Software: software.seg.org/2012/0003.

Both pieces of software are published under the SEG disclaimer. Parts of the modeller EMmod from
[Hunziker_et_al_2015], is furthermore released under the Common Public License Version 1.0 (CPL). See the NO-
TICE-file in the root directory for more information and a reprint of the SEG disclaimer and the CPL.
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CHAPTER 3

Note on speed, memory, and accuracy

There is the usual trade-off between speed, memory, and accuracy. Very generally speaking we can say that the FHT
is faster than QWE, but QWE is much easier on memory usage. QWE allows you to control the accuracy. A standard
quadrature in the form of QUAD is also provided. QUAD is generally orders of magnitudes slower, and more fragile
depending on the input arguments. However, it can provide accurate results where FHT and QWE fail.

There are two optimisation possibilities included via the opt-flag: parallelisation (opt='parallel') and spline
interpolation (opt='spline'). They are switched off by default. The optimization opt='parallel' only
affects speed and memory usage, whereas opt='spline' also affects precision!

I am sure empymod could be made much faster with cleverer coding style or with the likes of cython or numba.
Suggestions and contributions are welcomed!

Included transforms

Hankel transform:

• Fast Hankel Transform FHT ([Gosh_1971])

• Quadrature with Extrapolation QWE ([Key_2012])

• Adaptive quadrature QUAD (from QUADPACK)

Fourier transform:

• Sine- and Cosine filters ([Anderson_1975])

• Quadrature with Extrapolation QWE ([Key_2012])

• Fast Fourier Transform FFT

• Logarithmic Fast Fourier Transform FFTLog ([Hamilton_2000])

9
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FFTLog

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT originally proposed by [Talman_1978].
The code used by empymod was published in Appendix B of [Hamilton_2000] and is publicly available at
casa.colorado.edu/~ajsh/FFTLog. From the FFTLog-website:

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a
periodic sequence of logarithmically spaced points.

FFTlog can be used for the Hankel as well as for the Fourier Transform, but currently empymod uses it only
for the Fourier transform. It uses a simplified version of the python implementation of FFTLog, pyfftlog
(github.com/prisae/pyfftlog).

Depths, Rotation, and Bipole

Depths: Calculation of many source and receiver positions is fastest if they remain at the same depth, as they can be
calculated in one kernel-call. If depths do change, one has to loop over them.

Rotation: Sources and receivers aligned along the principal axes x, y, and z can be calculated in one kernel call. For
arbitrary oriented di- or bipoles, 3 kernel calls are required. If source and receiver are arbitrary oriented, 9 (3x3) kernel
calls are required.

Bipole: Bipoles increase the calculation time by the amount of integration points used. For a source and a receiver
bipole with each 5 integration points you need 25 (5x5) kernel calls. You can calculate it in 1 kernel call if you set
both integration points to 1, and therefore calculate the bipole as if they were dipoles at their centre.

Example: For 1 source and 10 receivers, all at the same depth, 1 kernel call is required. If all receivers are at different
depths, 10 kernel calls are required. If you make source and receivers bipoles with 5 integration points, 250 kernel calls
are required. If you rotate the source arbitrary horizontally, 500 kernel calls are required. If you rotate the receivers
too, in the horizontal plane, 1‘000 kernel calls are required. If you rotate the receivers also vertically, 1‘500 kernel
calls are required. If you rotate the source vertically too, 2‘250 kernel calls are required. So your calculation will take
2‘250 times longer! No matter how fast the kernel is, this will take a long time. Therefore carefully plan how precise
you want to define your source and receiver bipoles.

Table 3.1: Example as a table for comparison: 1 source, 10 receiver (one or
many frequencies).

source bipole receiver bipole
kernel calls intpts azimuth dip intpts azimuth dip diff. z
1 1 0/90 0/90 1 0/90 0/90 1
10 1 0/90 0/90 1 0/90 0/90 10
250 5 0/90 0/90 5 0/90 0/90 10
500 5 arb. 0/90 5 0/90 0/90 10
1000 5 arb. 0/90 5 arb. 0/90 10
1500 5 arb. 0/90 5 arb. arb. 10
2250 5 arb. arb. 5 arb. arb. 10

Parallelisation

If opt = 'parallel', a good dozen of the most time-consuming statements are calculated by using the numexpr
package (https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide). These statements are all in the kernel-
functions greenfct, reflections, and fields, and all involve Γ in one way or another, often calculating square roots or
exponentials. As Γ has dimensions (#frequencies, #offsets, #layers, #lambdas), it can become fairly big.

10 Chapter 3. Note on speed, memory, and accuracy
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The module numexpr uses by default all available cores up to a maximum of 8. You can change this behaviour to a
lower or a higher value with the following command (in the example it is changed to 4):

>>> import numexpr
>>> numexpr.set_num_threads(4)

This parallelisation will make empymod faster if you calculate a lot of offsets/frequencies at once, but slower for few
offsets/frequencies. Best practice is to check first which one is faster. (You can use the benchmark-notebook in the
prisae/empymod-notebooks-repository.)

Spline interpolation

If opt = 'spline', the so-called lagged convolution or splined variant of the FHT (depending on htarg) or the
splined version of the QWE are applied. The spline option should be used with caution, as it is an interpolation and
therefore less precise than the non-spline version. However, it significantly speeds up QWE, and massively speeds up
FHT. (The numexpr-version of the spline option is slower than the pure spline one, and therefore it is only possible to
have either 'parallel' or 'spline' on.)

Setting opt = 'spline' is generally faster. Good speed-up is achieved for QWE by setting maxint as low as
possible. Also, the higher nquad is, the higher the speed-up will be. The variable pts_per_dec has also some
influence. For FHT, big improvements are achieved for long FHT-filters and for many offsets/frequencies (thousands).
Additionally, spline minimizes memory requirements a lot. Speed-up is greater if all source-receiver angles are iden-
tical.

FHT: Default for pts_per_dec = None, which is the original lagged convolution, where the spacing is defined
by the filter-base, the transform is carried out first followed by spline-interpolation. You can set this parameter to an
integer, which defines the number of points to evaluate per decade. In this case the spline-interpolation is carried out
first, followed by the transformation. The original lagged convolution is generally the fastest for a very good precision.
However, by setting pts_per_dec appropriately one can achieve higher precision, normally at the cost of speed.

Warning: Keep in mind that it uses interpolation, and is therefore not as accurate as the non-spline version. Use
with caution and always compare with the non-spline version if you can apply the spline-version to your problem
at hand!

Be aware that QUAD (Hankel transform) always use the splined version and always loop over offsets. The same
applies for all frequency-to-time transformations.

The splined versions of QWE check whether the ratio of any two adjacent intervals is above a certain threshold (steep
end of the wavenumber or frequency spectrum). If it is, it carries out QUAD for this interval instead of QWE. The
threshold is stored in diff_quad, which can be changed within the parameter htarg and ftarg.

Looping

By default, you can calculate many offsets and many frequencies all in one go, vectorized (for the FHT), which is the
default. The loop parameter gives you the possibility to force looping over frequencies or offsets. This parameter
can have severe effects on both runtime and memory usage. Play around with this factor to find the fastest version
for your problem at hand. It ALWAYS loops over frequencies if ht = 'QWE'/'QUAD' or if opt = 'spline'.
All vectorized is very fast if there are few offsets or few frequencies. If there are many offsets and many frequencies,
looping over the smaller of the two will be faster. Choosing the right looping together with opt = 'parallel'
can have a huge influence.

3.4. Spline interpolation 11
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Vertical components

It is advised to use xdirect = True (the default) if source and receiver are in the same layer to calculate

• the vertical electric field due to a vertical electric source,

• configurations that involve vertical magnetic components (source or receiver),

• all configurations when source and receiver depth are exactly the same.

The Hankel transforms methods are having sometimes difficulties transforming these functions.
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CHAPTER 5

Code

model – Model EM-responses

EM-modelling routines. The implemented routines might not be the fastest solution to your specific problem. Use
these routines as template to create your own, problem-specific modelling routine!

Principal routines:

• bipole

• dipole

The main routine is bipole, which can model bipole source(s) and bipole receiver(s) of arbitrary direction, for electric or
magnetic sources and receivers, both in frequency and in time. A subset of bipole is dipole, which models infinitesimal
small dipoles along the principal axes x, y, and z.

These principal routines make use of the following two core routines:

• fem: Calculate wavenumber-domain electromagnetic field and carry out the Hankel transform to the
frequency domain.

• tem: Carry out the Fourier transform to time domain after fem.

Two further routines are shortcuts for frequency- and time-domain dipoles, respectively, and mainly here for legacy
reasons:

• frequency: Shortcut of dipole for frequency-domain calculation.

• time: Shortcut of dipole for time-domain calculation.

The last two routines are:

• wavenumber: Calculate the electromagnetic wavenumber-domain solution.

• gpr: Calculate the Ground-Penetrating Radar (GPR) response.

The wavenumber routine can be used if you are interested in the wavenumber-domain result, without Hankel nor
Fourier transform. It calls straight the kernel. The gpr-routine convolves the frequency-domain result with a wavelet,
and applies a gain to the time-domain result. This function is still experimental.

15
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empymod.model.bipole(src, rec, depth, res, freqtime, signal=None, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, msrc=False, srcpts=1,
mrec=False, recpts=1, strength=0, xdirect=True, ht=’fht’, htarg=None,
ft=’sin’, ftarg=None, opt=None, loop=None, verb=2)

Return the electromagnetic field due to an electromagnetic source.

Calculate the electromagnetic frequency- or time-domain field due to arbitrary finite electric or magnetic bipole
sources, measured by arbitrary finite electric or magnetic bipole receivers. By default, the electromagnetic
response is normalized to to source and receiver of 1 m length, and source strength of 1 A.

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m):

• [x0, x1, y0, y1, z0, z1] (bipole of finite length)

• [x, y, z, azimuth, dip] (dipole, infinitesimal small)

Dimensions:

• The coordinates x, y, and z (dipole) or x0, x1, y0, y1, z0, and z1 (bipole) can be
single values or arrays.

• The variables x and y (dipole) or x0, x1, y0, and y1 (bipole) must have the same
dimensions.

• The variable z (dipole) or z0 and z1 (bipole) must either be single values or having
the same dimension as the other coordinates.

• The variables azimuth and dip must be single values. If they have different angles,
you have to use the bipole-method (with srcpts/recpts = 1, so it is calculated as
dipoles).

Angles (coordinate system is left-handed, positive z down (East-North-Depth):

• azimuth (°): horizontal deviation from x-axis, anti-clockwise.

• dip (°): vertical deviation from xy-plane downwards.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH, epermV : array_like, optional

16 Chapter 5. Code
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Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH =
#epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH =
#mpermV = #res. Default is ones.

msrc, mrec : boolean, optional

If True, source/receiver (msrc/mrec) is magnetic, else electric. Default is False.

srcpts, recpts : int, optional

Number of integration points for bipole source/receiver, default is 1:

• srcpts/recpts < 3 : bipole, but calculated as dipole at centre

• srcpts/recpts >= 3 : bipole

strength : float, optional

Source strength (A):

• If 0, output is normalized to source and receiver of 1 m length, and source strength
of 1 A.

• If != 0, output is returned for given source and receiver length, and source strength.

Default is 0.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is calculated ana-
lytically in the frequency domain, if False it is calculated in the wavenumber domain.
Defaults to True.

ht : {‘fht’, ‘qwe’, ‘quad’}, optional

Flag to choose either the Fast Hankel Transform (FHT), the Quadrature-With-
Extrapolation (QWE), or a simple Quadrature (QUAD) for the Hankel transform. De-
faults to ‘fht’.

htarg : dict or list, optional

Depends on the value for ht:

• If ht = ‘fht’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter method itself. (de-
fault: empymod.filters.key_201_2009())

– pts_per_dec: points per decade (only relevant if spline=True)

If none, standard lagged convolution is used. (default: None)

• If ht = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec,

diff_quad, a, b, limit]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-30)

– nquad: order of Gaussian quadrature (default: 51)

– maxint: maximum number of partial integral intervals (default: 40)
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– pts_per_dec: points per decade; only relevant if opt=’spline’ (default:
80)

– diff_quad: criteria when to swap to QUAD (only relevant if opt=’spline’)
(default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ht = ‘quad’: [atol, rtol, limit, lmin, lmax, pts_per_dec]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-20)

– limit: An upper bound on the number of subintervals used in the adaptive
algorithm (default: 500)

– lmin: Minimum wavenumber (default 1e-6)

– lmax: Maximum wavenumber (default 0.1)

– pts_per_dec: points per decade (default: 40)

The values can be provided as dict with the keywords, or as list. However, if provided
as list, you have to follow the order given above. A few examples, assuming ht = qwe:

• Only changing rtol: {‘rtol’: 1e-4} or [1e-4] or 1e-4

• Changing rtol and nquad: {‘rtol’: 1e-4, ‘nquad’: 101} or [1e-4, ‘’, 101]

• Only changing diff_quad: {‘diffquad’: 10} or [’‘, ‘’, ‘’, ‘’, ‘’, 10]

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional

Only used if signal != None. Flag to choose either the Sine- or Cosine-Filter, the
Quadrature-With-Extrapolation (QWE), the FFTLog, or the FFT for the Fourier
transform. Defaults to ‘sin’.

ftarg : dict or list, optional

Only used if signal !=None. Depends on the value for ft:

• If ft = ‘sin’ or ‘cos’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter method
itself. (Default: empymod.filters.key_201_CosSin_2012())

– pts_per_dec: points per decade. If none, standard lagged
convolution is used. (Default: None)

• If ft = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec]:

– rtol: relative tolerance (default: 1e-8)

– atol: absolute tolerance (default: 1e-20)

– nquad: order of Gaussian quadrature (default: 21)

– maxint: maximum number of partial integral intervals (default:
200)

– pts_per_dec: points per decade (default: 20)

– diff_quad: criteria when to swap to QUAD (default: 100)
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– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ft = ‘fftlog’: [pts_per_dec, add_dec, q]:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

• If ft = ‘fft’: [dfreq, nfreq, ntot]:

– dfreq: Linear step-size of frequencies (default: 0.002)

– nfreq: Number of frequencies (default: 2048)

– ntot: Total number for FFT; difference between nfreq and
ntot is padded with zeroes. This number is ideally a power
of 2, e.g. 2048 or 4096 (default: nfreq).

– pts_per_dec : points per decade (default: None)

Padding can sometimes improve the result, not always. The de-
fault samples from 0.002 Hz - 4.096 Hz. If pts_per_dec is set
to an integer, calculated frequencies are logarithmically spaced
with the given number per decade, and then interpolated to yield
the required frequencies for the FFT.

The values can be provided as dict with the keywords, or as list. However, if pro-
vided as list, you have to follow the order given above. See htarg for a few examples.

opt : {None, ‘parallel’, ‘spline’}, optional

Optimization flag. Defaults to None:

• None: Normal case, no parallelization nor interpolation is used.

• If ‘parallel’, the package numexpr is used to evaluate the most expen-
sive statements. Always check if it actually improves performance for
a specific problem. It can speed up the calculation for big arrays, but
will most likely be slower for small arrays. It will use all available
cores for these specific statements, which all contain Gamma in one
way or another, which has dimensions (#frequencies, #offsets, #layers,
#lambdas), therefore can grow pretty big. The module numexpr uses
by default all available cores up to a maximum of 8. You can change
this behaviour to your desired number of threads nthreads with num-
expr.set_num_threads(nthreads).

• If ‘spline’, the lagged convolution or splined variant of the FHT or the
splined version of the QWE are used. Use with caution and check with
the non-spline version for a specific problem. (Can be faster, slower, or
plainly wrong, as it uses interpolation.) If spline is set it will make use
of the parameter pts_per_dec that can be defined in htarg. If pts_per_dec
is not set for FHT, then the lagged version is used, else the splined. This
option has no effect on QUAD.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’ also
affects precision! Please read the note in the README documentation for more
information.
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loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies (‘freq’)
or over offsets (‘off’), default is None. It always loops over frequencies if ht =
'qwe' or if opt = 'spline'. Calculating everything vectorized is fast for
few offsets OR for few frequencies. However, if you calculate many frequencies
for many offsets, it might be faster to loop over frequencies. Only comparing the
different versions will yield the answer for your specific problem at hand!

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print additional runtime and kernel calls

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information

Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided by
seconds [1/s].

However, source and receiver are normalised (unless strength != 0). So for instance
in the electric case the source strength is 1 A and its length is 1 m. So the electric
field could also be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed.

See also:

fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod import bipole
>>> # x-directed bipole source: x0, x1, y0, y1, z0, z1
>>> src = [-50, 50, 0, 0, 100, 100]
>>> # x-directed dipole source-array: x, y, z, azimuth, dip
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200, 0, 0]
>>> # layer boundaries
>>> depth = [0, 300, 1000, 1050]
>>> # layer resistivities
>>> res = [1e20, .3, 1, 50, 1]
>>> # Frequency
>>> freq = 1
>>> # Calculate electric field due to an electric source at 1 Hz.
>>> # [msrc = mrec = True (default)]
>>> EMfield = bipole(src, rec, depth, res, freq, verb=4)
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:: empymod START ::
~

depth [m] : 0 300 1000 1050
res [Ohm.m] : 1E+20 0.3 1 50 1
aniso [-] : 1 1 1 1 1
epermH [-] : 1 1 1 1 1
epermV [-] : 1 1 1 1 1
mpermH [-] : 1 1 1 1 1
mpermV [-] : 1 1 1 1 1
frequency [Hz] : 1
Hankel : Fast Hankel Transform

> Filter : Key 201 (2009)
> pts_per_dec : Defined by filter (lagged)

Hankel Opt. : None
Loop over : None (all vectorized)
Source(s) : 1 bipole(s)

> intpts : 1 (as dipole)
> length [m] : 100
> x_c [m] : 0
> y_c [m] : 0
> z_c [m] : 100
> azimuth [°] : 0
> dip [°] : 0

Receiver(s) : 10 dipole(s)
> x [m] : 500 - 5000 : 10 [min-max; #]

: 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
> y [m] : 0 - 0 : 10 [min-max; #]

: 0 0 0 0 0 0 0 0 0 0
> z [m] : 200
> azimuth [°] : 0
> dip [°] : 0

Required ab's : 11
~
:: empymod END; runtime = 0:00:00.005536 :: 1 kernel call(s)
~
>>> print(EMfield)
[ 1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j
-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

empymod.model.dipole(src, rec, depth, res, freqtime, signal=None, ab=11, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, ft=’sin’, ftarg=None, opt=None, loop=None, verb=2)

Return the electromagnetic field due to a dipole source.

Calculate the electromagnetic frequency- or time-domain field due to infinitesimal small electric or magnetic
dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and receivers
are directed along the principal directions x, y, or z, and all sources are at the same depth, as well as all receivers
are at the same depth.

Use the functions bipole to calculate dipoles with arbitrary angles or bipoles of finite length and arbitrary angle.

The function dipole could be replaced by bipole (all there is to do is translate ab into msrc, mrec, azimuth‘s and
dip‘s). However, dipole is kept separately to serve as an example of a simple modelling routine that can serve
as a template.

Parameters src, rec : list of floats or arrays
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Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freqtime : array_like

Frequencies f (Hz) if signal == None, else times t (s).

signal : {None, 0, 1, -1}, optional

Source signal, default is None:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ab : int, optional

Source-receiver configuration, defaults to 11.

electric source magnetic source
x y z x y z

electric

receiver

x 11 12 13 14 15 16
y 21 22 23 24 25 26
z 31 32 33 34 35 36

magnetic

receiver

x 41 42 43 44 45 46
y 51 52 53 54 55 56
z 61 62 63 64 65 66

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH, epermV : array_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH
= #mpermV = #res. Default is ones.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is calculated
analytically in the frequency domain, if False it is calculated in the wavenumber
domain. Defaults to True.

ht : {‘fht’, ‘qwe’, ‘quad’}, optional

Flag to choose either the Fast Hankel Transform (FHT), the Quadrature-With-
Extrapolation (QWE), or a simple Quadrature (QUAD) for the Hankel trans-
form. Defaults to ‘fht’.
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htarg : dict or list, optional

Depends on the value for ht:

• If ht = ‘fht’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or the filter
method itself. (default: empymod.filters.key_201_2009())

– pts_per_dec: points per decade (only relevant if spline=True)

If none, standard lagged convolution is used. (default:
None)

• If ht = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec,

diff_quad, a, b, limit]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-30)

– nquad: order of Gaussian quadrature (default: 51)

– maxint: maximum number of partial integral intervals
(default: 40)

– pts_per_dec: points per decade; only relevant if opt=’spline’
(default: 80)

– diff_quad: criteria when to swap to QUAD (only relevant if
opt=’spline’) (default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ht = ‘quad’: [atol, rtol, limit, lmin, lmax, pts_per_dec]:

– rtol: relative tolerance (default: 1e-12)

– atol: absolute tolerance (default: 1e-20)

– limit: An upper bound on the number of subintervals used in the
adaptive algorithm (default: 500)

– lmin: Minimum wavenumber (default 1e-6)

– lmax: Maximum wavenumber (default 0.1)

– pts_per_dec: points per decade (default: 40)

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. A few examples,
assuming ht = qwe:

• Only changing rtol: {‘rtol’: 1e-4} or [1e-4] or 1e-4

• Changing rtol and nquad: {‘rtol’: 1e-4, ‘nquad’: 101} or [1e-4, ‘’, 101]

• Only changing diff_quad: {‘diffquad’: 10} or [’‘, ‘’, ‘’, ‘’, ‘’, 10]

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional
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Only used if signal != None. Flag to choose either the Sine- or Cosine-Filter, the
Quadrature-With-Extrapolation (QWE), the FFTLog, or the FFT for the Fourier
transform. Defaults to ‘sin’.

ftarg : dict or list, optional

Only used if signal !=None. Depends on the value for ft:

• If ft = ‘sin’ or ‘cos’: [filter, pts_per_dec]:

– filter: string of filter name in empymod.filters or
the filter method itself. (Default: empy-
mod.filters.key_201_CosSin_2012())

– pts_per_dec: points per decade. If none, standard lagged
convolution is used. (Default: None)

• If ft = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec]:

– rtol: relative tolerance (default: 1e-8)

– atol: absolute tolerance (default: 1e-20)

– nquad: order of Gaussian quadrature (default: 21)

– maxint: maximum number of partial integral intervals
(default: 200)

– pts_per_dec: points per decade (default: 20)

– diff_quad: criteria when to swap to QUAD (default: 100)

– a: lower limit for QUAD (default: first interval from QWE)

– b: upper limit for QUAD (default: last interval from QWE)

– limit: limit for quad (default: maxint)

• If ft = ‘fftlog’: [pts_per_dec, add_dec, q]:

– pts_per_dec: sampels per decade (default: 10)

– add_dec: additional decades [left, right] (default: [-2, 1])

– q: exponent of power law bias (default: 0); -1 <= q <= 1

• If ft = ‘fft’: [dfreq, nfreq, ntot]:

– dfreq: Linear step-size of frequencies (default: 0.002)

– nfreq: Number of frequencies (default: 2048)

– ntot: Total number for FFT; difference between nfreq and
ntot is padded with zeroes. This number is ideally a
power of 2, e.g. 2048 or 4096 (default: nfreq).

– pts_per_dec : points per decade (default: None)

Padding can sometimes improve the result, not always. The
default samples from 0.002 Hz - 4.096 Hz. If pts_per_dec
is set to an integer, calculated frequencies are logarithmically
spaced with the given number per decade, and then interpo-
lated to yield the required frequencies for the FFT.

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. See htarg for a few
examples.
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opt : {None, ‘parallel’, ‘spline’}, optional

Optimization flag. Defaults to None:

• None: Normal case, no parallelization nor interpolation is used.

• If ‘parallel’, the package numexpr is used to evaluate the most expen-
sive statements. Always check if it actually improves performance for
a specific problem. It can speed up the calculation for big arrays, but
will most likely be slower for small arrays. It will use all available
cores for these specific statements, which all contain Gamma in one
way or another, which has dimensions (#frequencies, #offsets, #lay-
ers, #lambdas), therefore can grow pretty big. The module numexpr
uses by default all available cores up to a maximum of 8. You can
change this behaviour to your desired number of threads nthreads with
numexpr.set_num_threads(nthreads).

• If ‘spline’, the lagged convolution or splined variant of the FHT or
the splined version of the QWE are used. Use with caution and check
with the non-spline version for a specific problem. (Can be faster,
slower, or plainly wrong, as it uses interpolation.) If spline is set it will
make use of the parameter pts_per_dec that can be defined in htarg. If
pts_per_dec is not set for FHT, then the lagged version is used, else
the splined. This option has no effect on QUAD.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’ also
affects precision! Please read the note in the README documentation for more
information.

loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies (‘freq’)
or over offsets (‘off’), default is None. It always loops over frequencies if ht =
'qwe' or if opt = 'spline'. Calculating everything vectorized is fast for
few offsets OR for few frequencies. However, if you calculate many frequencies
for many offsets, it might be faster to loop over frequencies. Only comparing the
different versions will yield the answer for your specific problem at hand!

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print additional runtime and kernel calls

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information
Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

• If rec is electric, returns E [V/m].

• If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided by
seconds [1/s].
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However, source and receiver are normalised. So for instance in the electric case
the source strength is 1 A and its length is 1 m. So the electric field could also
be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed.
See also:

bipole Electromagnetic field due to an electromagnetic source.
fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod import dipole
>>> src = [0, 0, 100]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> EMfield = dipole(src, rec, depth, res, freqtime=1, verb=0)
>>> print(EMfield)
[ 1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j
-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]

empymod.model.frequency(src, rec, depth, res, freq, ab=11, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, opt=None, loop=None, verb=2)

Return the frequency-domain EM field due to a dipole source.

This is a shortcut for frequency-domain modelling using dipole (mainly for legacy reasons).

See dipole for info and a description of input and output parameters. Only difference is that frequency here
corresponds to freqtime in dipole.

See also:

dipole EM field due to an EM source (dipole-dipole).
bipole EM field due to an EM source (bipole-bipole).

Examples

>>> import numpy as np
>>> from empymod import frequency
>>> src = [0, 0, 100]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> EMfield = frequency(src, rec, depth, res, freq=1, verb=0)
>>> print(EMfield)
[ 1.68809346e-10 -3.08303130e-10j -8.77189179e-12 -3.76920235e-11j
-3.46654704e-12 -4.87133683e-12j -3.60159726e-13 -1.12434417e-12j
1.87807271e-13 -6.21669759e-13j 1.97200208e-13 -4.38210489e-13j
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-13j 4.62724887e-14 -1.32266600e-13j]
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empymod.model.time(src, rec, depth, res, time, ab=11, signal=0, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’fht’,
htarg=None, ft=’sin’, ftarg=None, opt=None, loop=’off’, verb=2)

Return the time-domain EM field due to a dipole source.

This is a shortcut for time-domain modelling using dipole (mainly for legacy reasons).

See dipole for info and a description of input and output parameters. Only difference is that time here corre-
sponds to freqtime in dipole.

See also:

dipole EM field due to an EM source (dipole-dipole).
bipole EM field due to an EM source (bipole-bipole).

Examples

>>> import numpy as np
>>> from empymod import time
>>> src = [0, 0, 100]
>>> rec = [np.arange(1, 11)*500, np.zeros(10), 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> EMfield = time(src, rec, depth, res, time=1, verb=0)
>>> print(EMfield)
[ 4.23754930e-11 3.13805193e-11 1.98884433e-11 1.14387827e-11

6.34605628e-12 3.54905259e-12 2.03906739e-12 1.20569287e-12
7.31746271e-13 4.55825907e-13]

empymod.model.gpr(src, rec, depth, res, freqtime, cf, gain=None, ab=11, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, xdirect=True, ht=’quad’,
htarg=None, ft=’fft’, ftarg=None, opt=None, loop=None, verb=2)

Return the Ground-Penetrating Radar signal.

THIS FUNCTION IS EXPERIMENTAL, USE WITH CAUTION.

It is rather an example how you can calculate GPR responses; however, DO NOT RELY ON IT! It works only
well with QUAD or QWE (quad, qwe) for the Hankel transform, and with FFT (fft) for the Fourier transform.

It calls internally dipole for the frequency-domain calculation. It subsequently convolves the response with a
Ricker wavelet with central frequency cf. If signal!=None, it carries out the Fourier transform and applies a gain
to the response.

For input parameters see the function dipole, except for:
Parameters cf : float

Centre frequency of GPR-signal, in Hz. Sensible values are between 10 MHz
and 3000 MHz.

gain : float

Power of gain function. If None, no gain is applied. Only used if signal!=None.
Returns EM : ndarray

GPR response
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empymod.model.wavenumber(src, rec, depth, res, freq, wavenumber, ab=11, aniso=None,
epermH=None, epermV=None, mpermH=None, mpermV=None, xdi-
rect=True, verb=2)

Return the electromagnetic wavenumber-domain field.

Calculate the electromagnetic wavenumber-domain field due to infinitesimal small electric or magnetic dipole
source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and receivers are
directed along the principal directions x, y, or z, and all sources are at the same depth, as well as all receivers
are at the same depth.

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension. The x- and y-coordinates only matter for the angle-dependent factor.

depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

freq : array_like

Frequencies f (Hz), used to calculate etaH/V and zetaH/V.

wavenumber : array

Wavenumbers lambda (1/m)

ab : int, optional

Source-receiver configuration, defaults to 11.

electric source magnetic source
x y z x y z

electric

receiver

x 11 12 13 14 15 16
y 21 22 23 24 25 26
z 31 32 33 34 35 36

magnetic

receiver

x 41 42 43 44 45 46
y 51 52 53 54 55 56
z 61 62 63 64 65 66

aniso : array_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH, epermV : array_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH
= #mpermV = #res. Default is ones.

xdirect : bool, optional

If True and source and receiver are in the same layer, the direct field is calculated
analytically in the frequency domain, if False it is calculated in the wavenumber
domain. Defaults to True.

verb : {0, 1, 2, 3, 4}, optional
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Level of verbosity, default is 2:

• 0: Print nothing.

• 1: Print warnings.

• 2: Print additional runtime and kernel calls

• 3: Print additional start/stop, condensed parameter information.

• 4: Print additional full parameter information
Returns PJ0, PJ1 : array

Wavenumber-domain EM responses:

• PJ0: Wavenumber-domain solution for the kernel with a Bessel func-
tion of the first kind of order zero.

• PJ1: Wavenumber-domain solution for the kernel with a Bessel func-
tion of the first kind of order one.

See also:

dipole Electromagnetic field due to an electromagnetic source (dipoles).
bipole Electromagnetic field due to an electromagnetic source (bipoles).
fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod.model import wavenumber
>>> src = [0, 0, 100]
>>> rec = [5000, 0, 200]
>>> depth = [0, 300, 1000, 1050]
>>> res = [1e20, .3, 1, 50, 1]
>>> freq = 1
>>> wavenrs = np.logspace(-3.7, -3.6, 10)
>>> PJ0, PJ1 = wavenumber(src, rec, depth, res, freq, wavenrs, verb=0)
>>> print(PJ0)
[ -1.02638329e-08 +4.91531529e-09j -1.05289724e-08 +5.04222413e-09j
-1.08009148e-08 +5.17238608e-09j -1.10798310e-08 +5.30588284e-09j
-1.13658957e-08 +5.44279805e-09j -1.16592877e-08 +5.58321732e-09j
-1.19601897e-08 +5.72722830e-09j -1.22687889e-08 +5.87492067e-09j
-1.25852765e-08 +6.02638626e-09j -1.29098481e-08 +6.18171904e-09j]

>>> print(PJ1)
[ 1.79483705e-10 -6.59235332e-10j 1.88672497e-10 -6.93749344e-10j

1.98325814e-10 -7.30068377e-10j 2.08466693e-10 -7.68286748e-10j
2.19119282e-10 -8.08503709e-10j 2.30308887e-10 -8.50823701e-10j
2.42062030e-10 -8.95356636e-10j 2.54406501e-10 -9.42218177e-10j
2.67371420e-10 -9.91530051e-10j 2.80987292e-10 -1.04342036e-09j]

empymod.model.fem(ab, off, angle, zsrc, zrec, lsrc, lrec, depth, freq, etaH, etaV, zetaH, zetaV, xdirect,
isfullspace, ht, htarg, use_spline, use_ne_eval, msrc, mrec, loop_freq, loop_off,
conv=True)

Return the electromagnetic frequency-domain response.

This function is called from one of the above modelling routines. No input-check is carried out here. See the
main description of model for information regarding input and output parameters.

5.1. model – Model EM-responses 29



empymod Documentation, Release 1.3.0

This function can be directly used if you are sure the provided input is in the correct format. This is useful for
inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

empymod.model.tem(fEM, off, freq, time, signal, ft, ftarg, conv=True)
Return the time-domain response of the frequency-domain response fEM.

This function is called from one of the above modelling routines. No input-check is carried out here. See the
main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful for
inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

kernel – Kernel calculation

Kernel of empymod, calculates the wavenumber-domain electromagnetic response. Plus analytical, frequency-domain
full- and half-space solutions.

The functions ‘wavenumber’, ‘angle_factor’, ‘fullspace’, ‘greenfct’, ‘reflections’, and ‘fields’ are based on source files
(specified in each function) from the source code distributed with [Hunziker_et_al_2015], which can be found at soft-
ware.seg.org/2015/0001. These functions are (c) 2015 by Hunziker et al. and the Society of Exploration Geophysicists,
http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the root directory for more information regard-
ing the involved licenses.

empymod.kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect,
msrc, mrec, use_ne_eval)

Calculate wavenumber domain solution.

Return the wavenumber domain solutions PJ0, PJ1, and PJ0b, which have to be transformed with a Hankel
transform to the frequency domain. PJ0/PJ0b and PJ1 have to be transformed with Bessel functions of order 0
(𝐽0) and 1 (𝐽1), respectively.

This function corresponds loosely to equations 105–107, 111–116, 119–121, and 123–128 in
[Hunziker_et_al_2015], and equally loosely to the file kxwmod.c.

[Hunziker_et_al_2015] uses Bessel functions of orders 0, 1, and 2 (𝐽0, 𝐽1, 𝐽2). The implementations of the
Fast Hankel Transform and the Quadrature-with-Extrapolation in transform are set-up with Bessel functions of
order 0 and 1 only. This is achieved by applying the recurrence formula

𝐽2(𝑘𝑟) =
2

𝑘𝑟
𝐽1(𝑘𝑟) − 𝐽0(𝑘𝑟) .

Note: PJ0 and PJ0b could theoretically be added here into one, and then be transformed in one go. However,
PJ0b has to be multiplied by factAng later. This has to be done after the Hankel transform for methods which
make use of spline interpolation, in order to work for offsets that are not in line with each other.

This function is called from one of the Hankel functions in transform. Consult the modelling routines in
model for a description of the input and output parameters.

If you are solely interested in the wavenumber-domain solution you can call this function directly. However,
you have to make sure all input arguments are correct, as no checks are carried out here.

empymod.kernel.angle_factor(angle, ab, msrc, mrec)
Return the angle-dependent factor.

The whole calculation in the wavenumber domain is only a function of the distance between the source and
the receiver, it is independent of the angel. The angle-dependency is this factor, which can be applied to the
corresponding parts in the wavenumber or in the frequency domain.
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The angle_factor corresponds to the sine and cosine-functions in Eqs 105-107, 111-116, 119-121, 123-128.

This function is called from one of the Hankel functions in transform. Consult the modelling routines in
model for a description of the input and output parameters.

empymod.kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH, zetaV, ab, msrc, mrec)
Analytical full-space solutions in the frequency domain.

𝐺̂𝑒𝑒
𝛼𝛽 , 𝐺̂

𝑒𝑒
3𝛼, 𝐺̂

𝑒𝑒
33, 𝐺̂

𝑒𝑚
𝛼𝛽 , 𝐺̂

𝑒𝑚
𝛼3

This function corresponds to equations 45–50 in [Hunziker_et_al_2015], and loosely to the corresponding files
Gin11.F90, Gin12.F90, Gin13.F90, Gin22.F90, Gin23.F90, Gin31.F90, Gin32.F90, Gin33.F90, Gin41.F90,
Gin42.F90, Gin43.F90, Gin51.F90, Gin52.F90, Gin53.F90, Gin61.F90, and Gin62.F90.

This function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

empymod.kernel.greenfct(zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect,
msrc, mrec, use_ne_eval)

Calculate Green’s function for TM and TE.

𝑔𝑡𝑚ℎℎ , 𝑔
𝑡𝑚
ℎ𝑧 , 𝑔

𝑡𝑚
𝑧ℎ , 𝑔

𝑡𝑚
𝑧𝑧 , 𝑔

𝑡𝑒
ℎℎ, 𝑔

𝑡𝑒
𝑧𝑧

This function corresponds to equations 108–110, 117/118, 122; 89–94, A18–A23, B13–B15; 97–102 A26–
A31, and B16–B18 in [Hunziker_et_al_2015], and loosely to the corresponding files Gamma.F90, Wprop.F90,
Ptotalx.F90, Ptotalxm.F90, Ptotaly.F90, Ptotalym.F90, Ptotalz.F90, and Ptotalzm.F90.

The Green’s functions are multiplied according to Eqs 105-107, 111-116, 119-121, 123-128; with the factors
inside the integrals.

This function is called from the function kernel.wavenumber.

empymod.kernel.reflections(depth, e_zH, Gam, lrec, lsrc, use_ne_eval)
Calculate Rp, Rm.

𝑅±
𝑛 , 𝑅̄

±
𝑛

This function corresponds to equations 64/65 and A-11/A-12 in [Hunziker_et_al_2015], and loosely to the
corresponding files Rmin.F90 and Rplus.F90.

This function is called from the function kernel.greenfct.

empymod.kernel.fields(depth, Rp, Rm, Gam, lrec, lsrc, zsrc, ab, TM, use_ne_eval)
Calculate Pu+, Pu-, Pd+, Pd-.

𝑃𝑢±
𝑠 , 𝑃 𝑑±

𝑠 , 𝑃𝑢±
𝑠 , 𝑃 𝑑±

𝑠 ;𝑃𝑢±
𝑠−1, 𝑃

𝑢±
𝑛 , 𝑃𝑢±

𝑠−1, 𝑃
𝑢±
𝑛 ;𝑃 𝑑±

𝑠+1, 𝑃
𝑑±
𝑛 , 𝑃 𝑑±

𝑠+1, 𝑃
𝑑±
𝑛

This function corresponds to equations 81/82, 95/96, 103/104, A-8/A-9, A-24/A-25, and A-32/A-33 in
[Hunziker_et_al_2015], and loosely to the corresponding files Pdownmin.F90, Pdownplus.F90, Pupmin.F90,
and Pdownmin.F90.

This function is called from the function kernel.greenfct.

empymod.kernel.halfspace(xco, yco, zsrc, zrec, res, freq, aniso=1, ab=11)
Return frequency-space domain VTI half-space solution.

Calculates the frequency-space domain electromagnetic response for a half-space below air using the diffusive
approximation, as given in [Slob_et_al_2010].

This routine is not strictly part of empymod and not used by it. However, it can be useful to compare the code to
the analytical solution.
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There are a few known typos in the equations of [Slob_et_al_2010]. Write the authors to receive an updated
version!

This could be integrated into empymod by checking if the top-layer is a very resistive layer, hence air, and
the rest is a half-space, and then calling this function instead of wavenumber. (Similar to the way fullspace is
incorporated if all layer parameters are identical.) The time-space domain solution could be implemented as
well.

Parameters xco, yco : array

Inline and crossline coordinates (m)

zsrc, zrec : float

Source and receiver depth (m)

res : float or array

Half-space resistivity (Ohm.m)

freq : float

Frequency (Hz)

aniso : float, optional

Anisotropy (-), default = 1

ab : int, optional

Src-Rec config, default = 11; {11, 12, 13, 21, 22, 23, 31, 32, 33}
Returns EM half-space solution

Examples

>>> from empymod.kernel import halfspace
>>> EM = halfspace(1000, 0, 10, 1, 10, 1)
>>> print('HS response : ', EM)
HS response : (3.02186073352e-09-3.87322421836e-10j)

transform – Hankel and Fourier Transforms

Methods to carry out the required Hankel transform from wavenumber to frequency domain and Fourier transform
from frequency to time domain.

The functions for the QWE and FHT Hankel and Fourier transforms are based on source files (specified in each
function) from the source code distributed with [Key_2012], which can be found at software.seg.org/2012/0003. These
functions are (c) 2012 by Kerry Key and the Society of Exploration Geophysicists, http://software.seg.org/disclaimer.
txt. Please read the NOTICE-file in the root directory for more information regarding the involved licenses.

empymod.transform.fht(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,
fhtarg, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using the Fast Hankel Transform.

The Fast Hankel Transform is a Digital Filter Method, introduced to geophysics by [Gosh_1971], and made
popular and wide-spread by [Anderson_1975], [Anderson_1979], [Anderson_1982].

This implementation of the FHT follows [Key_2012], equation 6. Without going into the mathematical details
(which can be found in any of the above papers) and following [Key_2012], the FHT method rewrites the Hankel
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transform of the form

𝐹 (𝑟) =

∫︁ ∞

0

𝑓(𝜆)𝐽𝑣(𝜆𝑟)d𝜆

as

𝐹 (𝑟) =

𝑛∑︁
𝑖=1

𝑓(𝑏𝑖/𝑟)ℎ𝑖/𝑟 ,

where ℎ is the digital filter.The Filter abscissae b is given by

𝑏𝑖 = 𝜆𝑖𝑟 = 𝑒𝑎𝑖, 𝑖 = −𝑙,−𝑙 + 1, · · · , 𝑙 ,

with 𝑙 = (𝑛− 1)/2, and 𝑎 is the spacing coefficient.

This function is loosely based on get_CSEM1D_FD_FHT.m from the source code distributed with [Key_2012].

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

kcount : int

Kernel count. For FHT, this is 1.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.hqwe(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,
qweargs, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using Quadrature-With-Extrapolation.

Quadrature-With-Extrapolation was introduced to geophysics by [Key_2012]. It is one of many so-called ISE
methods to solve Hankel Transforms, where ISE stands for Integration, Summation, and Extrapolation.

Following [Key_2012], but without going into the mathematical details here, the QWE method rewrites the
Hankel transform of the form

𝐹 (𝑟) =

∫︁ ∞

0

𝑓(𝜆)𝐽𝑣(𝜆𝑟)d𝜆

as a quadrature sum which form is similar to the FHT (equation 15),

𝐹𝑖 ≈
𝑚∑︁
𝑗=1

𝑓(𝑥𝑗/𝑟)𝑤𝑗𝑔(𝑥𝑗) =

𝑚∑︁
𝑗=1

𝑓(𝑥𝑗/𝑟)𝑔(𝑥𝑗) ,

but with various bells and whistles applied (using the so-called Shanks transformation in the form of a routine
called 𝜖-algorithm ([Shanks_1955], [Wynn_1956]; implemented with algorithms from [Trefethen_2000] and
[Weniger_1989]).

This function is based on get_CSEM1D_FD_QWE.m, qwe.m, and getBesselWeights.m from the source code
distributed with [Key_2012].

In the spline-version, hqwe checks how steep the decay of the wavenumber-domain result is, and calls QUAD
for the very steep interval, for which QWE is not suited.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns fEM : array
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Returns frequency-domain EM response.

kcount : int

Kernel count.

conv : bool

If true, QWE/QUAD converged. If not, <htarg> might have to be adjusted.

empymod.transform.hquad(zsrc, zrec, lsrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,
quadargs, use_spline, use_ne_eval, msrc, mrec)

Hankel Transform using the QUADPACK library.

This routine uses the scipy.integrate.quad module, which in turn makes use of the Fortran library QUADPACK
(qagse).

It is massively (orders of magnitudes) slower than either fht or hqwe, and is mainly here for completeness and
comparison purposes. It always uses interpolation in the wavenumber domain, hence it generally will not be as
precise as the other methods. However, it might work in some areas where the others fail.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns fEM : array

Returns frequency-domain EM response.

kcount : int

Kernel count. For HQUAD, this is 1.

conv : bool

If true, QUAD converged. If not, <htarg> might have to be adjusted.

empymod.transform.ffht(fEM, time, freq, ftarg)
Fourier Transform using a Cosine- or a Sine-filter.

It follows the Filter methodology [Anderson_1975], see fht for more information.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

This function is based on get_CSEM1D_TD_FHT.m from the source code distributed with [Key_2012].
Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.fqwe(fEM, time, freq, qweargs)
Fourier Transform using Quadrature-With-Extrapolation.

It follows the QWE methodology [Key_2012] for the Hankel transform, see hqwe for more information.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

This function is based on get_CSEM1D_TD_QWE.m from the source code distributed with [Key_2012].

fqwe checks how steep the decay of the frequency-domain result is, and calls QUAD for the very steep interval,
for which QWE is not suited.

Returns tEM : array

Returns time-domain EM response of fEM for given time.
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conv : bool

If true, QWE/QUAD converged. If not, <ftarg> might have to be adjusted.

empymod.transform.fftlog(fEM, time, freq, ftarg)
Fourier Transform using FFTLog.

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT. FFTLog was presented in Appendix B
of [Hamilton_2000] and published at <http://casa.colorado.edu/~ajsh/FFTLog>.

This function uses a simplified version of pyfftlog, which is a python-version of FFTLog. For more details
regarding pyfftlog see <https://github.com/prisae/pyfftlog>.

Not the full flexibility of FFTLog is available here: Only the logarithmic FFT (fftl in FFTLog), not the Hankel
transform (fht in FFTLog). Furthermore, the following parameters are fixed:

•mu = 0.5 (sine-transform)
•kr = 1 (initial value)
•kropt = 1 (silently adjusts kr)
•dir = 1 (forward)

Furthermore, q is restricted to -1 <= q <= 1.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.fft(fEM, time, freq, ftarg)
Fourier Transform using the Fast Fourier Transform.

The function is called from one of the modelling routines in model. Consult these modelling routines for a
description of the input and output parameters.

Returns tEM : array

Returns time-domain EM response of fEM for given time.

conv : bool

Only relevant for QWE/QUAD.

empymod.transform.qwe(rtol, atol, maxint, inp, intervals, lambd=None, off=None, factAng=None)
Quadrature-With-Extrapolation.

This is the kernel of the QWE method, used for the Hankel (hqwe) and the Fourier (fqwe) Transforms. See hqwe
for an extensive description.

This function is based on qwe.m from the source code distributed with [Key_2012].

empymod.transform.get_spline_values(filt, inp, nr_per_dec=None)
Return required calculation points.

empymod.transform.fhti(rmin, rmax, n, q)
Return parameters required for FFTLog.

filters – Digital Filters for FHT

Filters for the Fast Hankel Transform (FHT, [Anderson_1982]) and the Fourier Sine and Cosine Transforms
[Anderson_1975].
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To calculate the fhtfilter.factor I used

np.around(np.average(fhtfilter.base[1:]/fhtfilter.base[:-1]), 15)

The filters kong_61_2007 and kong_241_2007 from [Kong_2007], and key_101_2009, key_201_2009, key_401_2009,
key_81_CosSin_2009, key_241_CosSin_2009, and key_601_CosSin_2009 from [Key_2009] are taken from
DIPOLE1D, [Key_2009], which can be downloaded at marineemlab.ucsd.edu/Projects/Occam/1DCSEM. DIPOLE1D
is distributed under the license GNU GPL version 3 or later. Kerry Key gave his written permission to re-distribute the
filters under the Apache License, Version 2.0 (email from Kerry Key to Dieter Werthmüller, 21 November 2016).

The filters anderson_801_1982 from [Anderson_1982] and key_51_2012, key_101_2012, key_201_2012,
key_101_CosSin_2012, and key_201_CosSin_2012, all from [Key_2012], are taken from the software distributed with
[Key_2012] and available at software.seg.org/2012/0003. These filters are distributed under the SEG license.

class empymod.filters.DigitalFilter(name)
Simple Class for Digital Filters.

empymod.filters.anderson_801_1982()
Anderson 801: [Anderson_1982].

Anderson 801 pt filter, as published in [Anderson_1982]; taken from file wa801Hankel.txt from [Key_2012],
published by the Society of Exploration Geophysicists; software.seg.org/2012/0003. License: http://software.
seg.org/disclaimer.txt.

empymod.filters.key_101_2009()
Key 101 2009: [Key_2009].

Key 101 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

empymod.filters.key_101_2012()
Key 101 2012: [Key_2012].

Key 101 pt filter, taken from file kk101Hankel.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_101_CosSin_2012()
Key 101 CosSin 2012: [Key_2012].

Key 101 pt filter, taken from file kk101CosSin.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_2009()
Key 201 2009: [Key_2009].

Key 201 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

empymod.filters.key_201_2012()
Key 201 2012: [Key_2012].

Key 201 pt filter, taken from file kk201Hankel.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_CosSin_2012()
Key 201 CosSin 2012: [Key_2012].

Key 201 pt filter, taken from file kk201CosSin.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.
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empymod.filters.key_241_CosSin_2009()
Key 241 CosSin 2009: [Key_2009].

Key 241 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

empymod.filters.key_401_2009()
Key 401 2009: [Key_2009].

Key 401 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

empymod.filters.key_51_2012()
Key 51 2012: [Key_2012].

Key 51 pt filter, taken from file kk51Hankel.txt from [Key_2012], published by the Society of Exploration
Geophysicists; software.seg.org/2012/0003. License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_601_CosSin_2009()
Key 601 CosSin 2009: [Key_2009].

Key 601 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

empymod.filters.key_81_CosSin_2009()
Key 81 CosSin 2009: [Key_2009].

Key 81 pt filter, as published in [Key_2009]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

empymod.filters.kong_241_2007()
Kong 241: [Kong_2007].

Kong 241 pt filter, as published in [Kong_2007]; taken from file FilterModules.f90 from [Key_2009], avail-
able on marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.
apache.org/licenses/LICENSE-2.0.

empymod.filters.kong_61_2007()
Kong 61: [Kong_2007].

Kong 61 pt filter, as published in [Kong_2007]; taken from file FilterModules.f90 from [Key_2009], available on
marineemlab.ucsd.edu/Projects/Occam/1DCSEM. License: Apache License, Version 2.0, http://www.apache.
org/licenses/LICENSE-2.0.

utils – Utilites

Utilities for model such as checking input parameters.

This module consists of four groups of functions:

0. General settings

1. Class EMArray

2. Input parameter checks for modelling

3. Internal utilities
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class empymod.utils.EMArray
Subclassing an ndarray: add amplitude <amp> and phase <pha>.

Parameters realpart : array

1. Real part of input, if input is real or complex.

2. Imaginary part of input, if input is pure imaginary.

3. Complex input.

In cases 2 and 3, imagpart must be None.

imagpart: array, optional

Imaginary part of input. Defaults to None.

Examples

>>> import numpy as np
>>> from empymod.utils import EMArray
>>> emvalues = EMArray(np.array([1,2,3]), np.array([1, 0, -1]))
>>> print('Amplitude : ', emvalues.amp)
Amplitude : [ 1.41421356 2. 3.16227766]
>>> print('Phase : ', emvalues.pha)
Phase : [ 45. 0. -18.43494882]

Attributes

amp (ndarray) Amplitude of the input data.
pha (ndarray) Phase of the input data, in degrees, lag-defined (increasing with increasing offset.) To get

lead-defined phases, multiply imagpart by -1 before passing through this function.

empymod.utils.check_time(time, signal, ft, ftarg, verb)
Check time domain specific input parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters time : array_like

Times t (s).

signal : {None, 0, 1, -1}

Source signal:

• None: Frequency-domain response

• -1 : Switch-off time-domain response

• 0 : Impulse time-domain response

• +1 : Switch-on time-domain response

ft : {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}

Flag for Fourier transform.

ftarg : str or filter from empymod.filters or array_like,

Only used if signal !=None. Depends on the value for ft:

verb : {0, 1, 2, 3, 4}
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Level of verbosity.
Returns time : float

Time, checked for size and assured min_time.

freq : float

Frequencies required for given times and ft-settings.

ft, ftarg

Checked if valid and set to defaults if not provided, checked with signal.

empymod.utils.check_model(depth, res, aniso, epermH, epermV, mpermH, mpermV, verb)
Check the model: depth and corresponding layer parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH, epermV : array_like

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res.

mpermH, mpermV : array_like

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH
= #mpermV = #res.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns depth : array

Depths of layer interfaces, adds -infty at beginning if not present.

res : array

As input, checked for size.

aniso : array

As input, checked for size. If None, defaults to an array of ones.

epermH, epermV : array_like

As input, checked for size. If None, defaults to an array of ones.

mpermH, mpermV : array_like

As input, checked for size. If None, defaults to an array of ones.

isfullspace : bool

If True, the model is a fullspace (res, aniso, epermH, epermV, mpermM, and
mpermV are in all layers the same).
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empymod.utils.check_frequency(freq, res, aniso, epermH, epermV, mpermH, mpermV, verb)
Calculate frequency-dependent parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters freq : array_like

Frequencies f (Hz).

res : array_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH, epermV : array_like

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res.

mpermH, mpermV : array_like

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH
= #mpermV = #res.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns freq : float

Frequency, checked for size and assured min_freq.

etaH, etaV : array

Parameters etaH/etaV, same size as provided resistivity.

zetaH, zetaV : array

Parameters zetaH/zetaV, same size as provided resistivity.

empymod.utils.check_hankel(ht, htarg, verb)
Check Hankel transform parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters ht : {‘fht’, ‘qwe’, ‘quad’}

Flag to choose the Hankel transform.

htarg : str or filter from empymod.filters or array_like,

Depends on the value for ht.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns ht, htarg

Checked if valid and set to defaults if not provided.

empymod.utils.check_opt(opt, loop, ht, htarg, verb)
Check optimization parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.
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Parameters opt : {None, ‘parallel’, ‘spline’}

Optimization flag.

loop : {None, ‘freq’, ‘off’}

Loop flag.

ht : str

Flag to choose the Hankel transform.

htarg : array_like,

Depends on the value for ht.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns use_spline : bool

Boolean if to use spline interpolation.

use_ne_eval : bool

Boolean if to use numexpr.

loop_freq : bool

Boolean if to loop over frequencies.

loop_off : bool

Boolean if to loop over offsets.

empymod.utils.check_dipole(inp, name, verb)
Check dipole parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Pole coordinates (m): [pole-x, pole-y, pole-z].

name : str, {‘src’, ‘rec’}

Pole-type.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns inp : list

List of pole coordinates [x, y, z].

ninp : int

Number of inp-elements

empymod.utils.check_bipole(inp, name)
Check di-/bipole parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Coordinates of inp (m): [dipole-x, dipole-y, dipole-z, azimuth, dip] or. [bipole-
x0, bipole-x1, bipole-y0, bipole-y1, bipole-z0, bipole-z1].
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name : str, {‘src’, ‘rec’}

Pole-type.
Returns inp : list

As input, checked for type and length.

ninp : int

Number of inp.

ninpz : int

Number of inp depths (ninpz is either 1 or ninp).

isdipole : bool

True if inp is a dipole.

empymod.utils.check_ab(ab, verb)
Check source-receiver configuration.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters ab : int

Source-receiver configuration.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns ab_calc : int

Adjusted source-receiver configuration using reciprocity.

msrc, mrec : bool

If True, src/rec is magnetic; if False, src/rec is electric.

empymod.utils.get_abs(msrc, mrec, srcazm, srcdip, recazm, recdip, verb)
Get required ab’s for given angles.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters msrc, mrec : bool

True if src/rec is magnetic, else False.

srcazm, recazm : float

Horizontal source/receiver angle (azimuth).

srcdip, recdip : float

Vertical source/receiver angle (dip).

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns ab_calc : array of int

ab’s to calculate for this bipole.

empymod.utils.get_geo_fact(ab, srcazm, srcdip, recazm, recdip, msrc, mrec)
Get required geometrical scaling factor for given angles.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.
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Parameters ab : int

Source-receiver configuration.

srcazm, recazm : float

Horizontal source/receiver angle.

srcdip, recdip : float

Vertical source/receiver angle.
Returns fact : float

Geometrical scaling factor.

empymod.utils.get_azm_dip(inp, iz, ninpz, intpts, isdipole, strength, name, verb)
Get angles, interpolation weights and normalization weights.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Input coordinates (m):

• [x0, x1, y0, y1, z0, z1] (bipole of finite length)

• [x, y, z, azimuth, dip] (dipole, infinitesimal small)

iz : int

Index of current di-/bipole depth (-).

ninpz : int

Total number of di-/bipole depths (ninpz = 1 or npinz = nsrc) (-).

intpts : int

Number of integration points for bipole (-).

isdipole : bool

Boolean if inp is a dipole.

strength : float, optional

Source strength (A):

• If 0, output is normalized to source and receiver of 1 m length, and
source strength of 1 A.

• If != 0, output is returned for given source and receiver length, and
source strength.

name : str, {‘src’, ‘rec’}

Pole-type.

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns tout : list of floats or arrays

Dipole coordinates x, y, and z (m).

azm : float or array of floats

Horizontal angle (azimuth).
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dip : float or array of floats

Vertical angle (dip).

g_w : float or array of floats

Factors from Gaussian interpolation.

intpts : int

As input, checked.

inp_w : float or array of floats

Factors from source/receiver length and source strength.

empymod.utils.get_off_ang(src, rec, nsrc, nrec, verb)
Get depths, offsets, angles, hence spatial input parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters src, rec : list of floats or arrays

Source/receiver dipole coordinates x, y, and z (m).

nsrc, nrec : int

Number of sources/receivers (-).

verb : {0, 1, 2, 3, 4}

Level of verbosity.
Returns off : array of floats

Offsets

angle : array of floats

Angles

empymod.utils.get_layer_nr(inp, depth)
Get number of layer in which inp resides.

Note: If zinp is on a layer interface, the layer above the interface is chosen.

This check-function is called from one of the modelling routines in model. Consult these modelling routines
for a detailed description of the input parameters.

Parameters inp : list of floats or arrays

Dipole coordinates (m)

depth : array

Depths of layer interfaces.
Returns linp : int or array_like of int

Layer number(s) in which inp resides (plural only if bipole).

zinp : float or array

inp[2] (depths).

empymod.utils.printstartfinish(verb, inp=None, kcount=None)
Print start and finish with time measure and kernel count.

empymod.utils.conv_warning(conv, targ, name, verb)
Print error if QWE/QUAD did not converge at least once.
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