empymod Documentation
Release 1.7.3

Dieter Werthmuller

16 July 2018

Contents

1 More information 3
2 Citation 5
3 License information 7
3.1 Manual e e 7
32 Roadmap e e 15
3.3 Changelog o e e e e e e e 16
34 Credits . . . o o e e e e e e e 22
3.5 Code e 22
3.6 Add-0nS . .. e e 51
Bibliography 63
Python Module Index 65

empymod Documentation, Release 1.7.3

Version: 1.7.3 ~ Date: 16 July 2018

The electromagnetic modeller empymod can model electric or magnetic responses due to a three-dimensional
electric or magnetic source in a layered-earth model with vertical transverse isotropic (VTI) resistivity, VTI electric
permittivity, and VTI magnetic permeability, from very low frequencies (DC) to very high frequencies (GPR).
The calculation is carried out in the wavenumber-frequency domain, and various Hankel- and Fourier-transform
methods are included to transform the responses into the space-frequency and space-time domains.

See https://empymod.github.io/#features for a complete list of features.

Contents 1

https://empymod.github.io/#features

empymod Documentation, Release 1.7.3

2 Contents

cHAPTER 1

More information

For more information regarding installation, usage, contributing, roadmap, bug reports, and much more, see
* Website: https://empymod.github.io,
* Documentation: https://empymod.readthedocs.io,
* Source Code: https://github.com/empymod,

* Examples: https://github.com/empymod/example-notebooks.

https://empymod.github.io
https://empymod.readthedocs.io
https://github.com/empymod
https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.7.3

4 Chapter 1. More information

CHAPTER 2

Citation

If you publish results for which you used empymod, please give credit by citing this article:

Werthmiiller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media in Python:
empymod: Geophysics, 82(6), WB9-WB19; DOI: 10.1190/ge02016-0626.1.

All releases have a Zenodo-DOI, provided on the release-page. Also consider citing Hunziker et al. (2015) and
Key (2012), without which empymod would not exist.

http://doi.org/10.1190/geo2016-0626.1
https://github.com/empymod/empymod/releases
https://doi.org/10.1190/geo2013-0411.1
https://doi.org/10.1190/geo2011-0237.1

empymod Documentation, Release 1.7.3

6 Chapter 2. Citation

CHAPTER 3

License information

Copyright 2016-2018 Dieter Werthmiiller

Licensed under the Apache License, Version 2.0. See the LICENSE- and NOTICE-files or the documentation for
more information.

3.1 Manual

3.1.1 Theory

The code is principally based on
e [Hunziker_et_al_2015] for the wavenumber-domain calculation (kernel),
e [Key 2012] for the DLF and QWE transforms,
e [Slob_et_al_2010] for the analytical half-space solutions, and
* [Hamilton_2000] for the FFTLog.

See these publications and all the others given in the references, if you are interested in the theory on which
empymod is based. Another good reference is [Ziolkowski_and_Slob_2018], which will be published in late
2018. The book derives in great detail the equations for layered-Earth CSEM modelling.

3.1.2 Installation

You can install empymod either via conda:

’conda install -c prisae empymod

or via pip:

’pip install empymod

Required are Python version 3.4 or higher and the modules NumPy and SciPy. The module numexpr is required
additionally (built with Intel’s VML) if you want to run parts of the kernel in parallel.

empymod Documentation, Release 1.7.3

The modeller empymod comes with add-ons (empymod. scripts). These add-ons provide some very specific,
additional functionalities. Some of these add-ons have additional, optional dependencies for other modules such
asmatplotlib. See the Add-ons-section for their documentation.

If you are new to Python I recommend using a Python distribution, which will ensure that all dependencies are
met, specifically properly compiled versions of NumPy and SciPy; I recommend using Anaconda. If you install
[Anaconda](https://www.anaconda.com/download). If you install Anaconda you can simply start the Anaconda
Navigator, add the channel prisae and empymod will appear in the package list and can be installed with a
click.

Warning: Do not use scipy == 0.19.0. It has a memory leak in quad, see
github.com/scipy/scipy/pull/7216. So if you use QUAD (or potentially QWE) in any of your transforms you
might see your memory usage going through the roof.

The structure of empymod is:
* model.py: EM modelling routines.
« utils.py: Utilities for model such as checking input parameters.

* kernel.py: Kernel of empymod, calculates the wavenumber-domain electromagnetic response. Plus ana-
lytical, frequency-domain full- and half-space solutions.

* transform.py: Methods to carry out the required Hankel transform from wavenumber to space domain and
Fourier transform from frequency to time domain.

« filters.py: Filters for the Digital Linear Filters method DLF (Hankel and Fourier transforms).

3.1.3 Usage/Examples

A good starting point is [Werthmuller_2017b], and more information can be found in [Werthmuller_2017]. There
are a lot of examples of its usage available, in the form of Jupyter notebooks. Have a look at the following
repositories:

» Example notebooks: https://github.com/empymod/example-notebooks,
* Geophysical Tutoriol TLE: https://github.com/empymod/article-tle2017, and

* Numerical examples of [Ziolkowski_and_Slob_2018]: https://github.com/empymod/
csem-ziolkowski-and-slob.

The main modelling routines is bipole, which can calculate the electromagnetic frequency- or time-domain
field due to arbitrary finite electric or magnetic bipole sources, measured by arbitrary finite electric or magnetic
bipole receivers. The model is defined by horizontal resistivity and anisotropy, horizontal and vertical electric
permittivities and horizontal and vertical magnetic permeabilities. By default, the electromagnetic response is
normalized to source and receiver of 1 m length, and source strength of 1 A.

A simple frequency-domain example, with most of the parameters left at the default value:

>>> import numpy as np
>>> from empymod import bipole
>>> # x-directed bipole source: x0, x1, y0, yl1, z0, =zl

>>> src = [-50, 50, 0, 0, 100, 100]
>>> # x-directed dipole source-array: x, y, z, azimuth, dip
>>> rec = [np.arange(l, 11)%500, np.zeros(10), 200, 0, 0]

>>> # layer boundaries

>>> depth = [0, 300, 1000, 1050]

>>> # layer resistivities

>>> res = [le20, .3, 1, 50, 1]

>>> # Frequency

>>> freq =1

>>> # Calculate electric field due to an electric source at 1 Hz.

8 Chapter 3. License information

https://www.anaconda.com/download
https://www.anaconda.com/download
https://github.com/scipy/scipy/pull/7216
https://github.com/empymod/example-notebooks
https://github.com/empymod/article-tle2017
https://github.com/empymod/csem-ziolkowski-and-slob
https://github.com/empymod/csem-ziolkowski-and-slob

empymod Documentation, Release 1.7.3

>>> # [msrc = mrec = True (default)]

>>> EMfield = bipole(src, rec, depth, res, freq, verb=4)
empymod START
depth [m] 0 300 1000 1050
res [Ohm.m] 1E+20 0.3 1 50 1
aniso [-] 11111
epermH [-] 11111
epermV [-1] 11111
mpermH [-1] 11111
mpermV [-] 11111
frequency [Hz] 1
Hankel DLF (Fast Hankel Transform)
> Filter Key 201 (2009)
> DLF type Standard
Kernel Opt. None
Loop over None (all vectorized)
Source (s) 1 bipole(s)
> intpts 1 (as dipole)
> length [m] 100
> X_C [m] 0
> y_cC [m] 0
> z_cC [m] 100
> azimuth [°] 0
> dip [°] 0
Receiver (s) 10 dipole(s)
> x [m] 500 - 5000 10 [min-max; #]
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
>y [m] 0 -0 10 [min-max; #]
000O0O0OOOOODO
> z [m] 200
> azimuth [°] 0
> dip [°] 0
Required ab's 11
empymod END; runtime = 0:00:00.005536 1 kernel call (s)

>>> print (EMfield)

[1.68809346e-10 -3.08303130e-10j -8.77189179%9e-12 -3.76920235e-117
-3.46654704e-12 -4.87133683e-123 -3.60159726e-13 -1.12434417e-127
1.87807271e-13 -6.2166975%9e-137 1.97200208e-13 —-4.38210489%e-137
1.44134842e-13 -3.17505260e-13] 9.92770406e-14 -2.33950871e-133
6.75287598e—-14 -1.74922886e-137 4.62724887e-14 -1.32266600e-137]

3.1.4 Contributing

New contributions, bug reports, or any kind of feedback is always welcomed! Have a look at the Roadmap-section
to get an idea of things that could be implemented. The best way for interaction is at https://github.com/empymod.
If you prefer to contact me outside of GitHub use the contact form on my personal website, https://werthmuller.org.

To install empymod from source, you can download the latest version from GitHub and either add the path to
empymod to your python-path variable, or install it in your python distribution via:

python setup.py install

Please make sure your code follows the pep8-guidelines by using, for instance, the python module £1ake8, and
also that your code is covered with appropriate tests. Just get in touch if you have any doubts.

3.1. Manual 9

https://github.com/empymod
https://werthmuller.org

empymod Documentation, Release 1.7.3

3.1.5 Tests and benchmarks

The modeller comes with a test suite using pytest. If you want to run the tests, just install pytest and run it
within the empymod-top-directory.

> pip install pytest coveralls pytest-flake8 pytest-mpl

> # and then

> cd to/the/empymod/folder # Ensure you are in the right directory,

> 1s -d =/ # your output should look the same.

docs/ empymod/ tests/

> # pytest will find the tests, which are located in the tests-folder.
> # simply run

> pytest —--cov=empymod --flake8 —--mpl

It should run all tests successfully. Please let me know if not!

Note that installations of empymod via conda or pip do not have the test-suite included. To run the test-suite you
must download empymod from GitHub.

There is also a benchmark suite using airspeed velocity, located in the empymod/asv-repository. The results of
my machine can be found in the empymod/bench, its rendered version at empymod.github.io/asv.

3.1.6 Transforms

Included Hankel transforms:
* Digital Linear Filters DLF
* Quadrature with Extrapolation QWE
* Adaptive quadrature QUAD
Included Fourier transforms:
* Digital Linear Filters DLF
* Quadrature with Extrapolation QWE
 Logarithmic Fast Fourier Transform FFTLog

¢ Fast Fourier Transform FFT

Digital Linear Filters

The module empymod. filters comes with many DLFs for the Hankel and the Fourier transform. If you want
to export one of these filters to plain ascii files you can use the t of i 1e-routine of each filter:

>>> import empymod

>>> # Load a filter

>>> filt = empymod.filters.wer_201_2018 ()

>>> # Save it to pure ascii-files

>>> filt.tofile()

>>> # This will save the following three files:

>>> # ./filters/wer_201_2018 base.txt
>>> # ./filters/wer_201_2018_ 7j0.txt
>>> # ./filters/wer_201_2018_7jl1.txt

Similarly, if you want to use an own filter you can do that as well. The filter base and the filter coefficient have to
be stored in separate files:

>>> import empymod

>>> # Create an empty filtery;

>>> # Name has to be the base of the text files

>>> filt = empymod.filters.DigitalFilter('my-filter')

10 Chapter 3. License information

https://github.com/empymod/asv
https://github.com/empymod/bench
https://empymod.github.io/asv

empymod Documentation, Release 1.7.3

>>> # Load the ascii-files
>>> filt.fromfile ()
>>> # This will load the following three files:

>>> # ./filters/my—-filter_base.txt
>>> # ./filters/my—-filter. jO.txt
>>> # ./filters/my-filter_jl.txt

>>> # and store them in filt.base, filt.j0, and filt.jl.

The path can be adjusted by providing tofile and fromfile with a path-argument.

FFTLog

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT originally proposed by [Talman_1978].
The code used by empymod was published in Appendix B of [Hamilton_2000] and is publicly available at
casa.colorado.edu/~ajsh/FFTLog. From the FFTLog-website:

FFTLog is a set of fortran subroutines that compute the fast Fourier or Hankel (= Fourier-Bessel) transform of a
periodic sequence of logarithmically spaced points.

FFTlog can be used for the Hankel as well as for the Fourier Transform, but currently empymod uses it only
for the Fourier transform. It uses a simplified version of the python implementation of FFTLog, pyfftlog
(github.com/prisae/pyfftlog).

[Haines_and_Jones_1988] proposed a logarithmic Fourier transform (abbreviated by the authors as LFT) for
electromagnetic geophysics, also based on [Talman_1978]. 1 do not know if Hamilton was aware of the work by
Haines and Jones. The two publications share as reference only the original paper by Talman, and both cite a pub-
lication of Anderson; Hamilton cites [Anderson_1982], and Haines and Jones cite [Anderson_1979]. Hamilton
probably never heard of Haines and Jones, as he works in astronomy, and Haines and Jones was published in the
Geophysical Journal.

Logarithmic FFTs are not widely used in electromagnetics, as far as I know, probably because of the ease, speed,
and generally sufficient precision of the digital filter methods with sine and cosine transforms (/Anderson_1975]).
However, comparisons show that FFTLog can be faster and more precise than digital filters, specifically for re-
sponses with source and receiver at the interface between air and subsurface. Credit to use FFTLog in electro-
magnetics goes to David Taylor who, in the mid-2000s, implemented FFTLog into the forward modellers of the
company Multi-Transient ElectroMagnetic (MTEM Ltd, later Petroleum Geo-Services PGS). The implementation
was driven by land responses, where FFTLog can be much more precise than the filter method for very early times.

Notes on Fourier Transform

The Fourier transform to obtain the space-time domain impulse response from the complex-valued space-
frequency response can be calculated by either a cosine transform with the real values, or a sine transform with
the imaginary part,

E(r, t)mpulse — %/0 R[E(r,w)] cos(wt) dw ,
2 oo

= f—/ S[E(r,w)] sin(wt) dw ,
0

™

see, e.g., [Anderson_1975] or [Key 2012]. Quadrature-with-extrapolation, FFTLog, and obviously the
sine/cosine-transform all make use of this split.

To obtain the step-on response the frequency-domain result is first divided by iw, in the case of the step-off
response it is additionally multiplied by -1. The impulse-response is the time-derivative of the step-response,

0 E(r, t)*r

E(’I“, 2S)Impulse _ o

Using % < iw and going the other way, from impulse to step, leads to the divison by iw. (This only holds because
we define in accordance with the causality principle that E(r,t < 0) = 0).

3.1. Manual 11

http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/pyfftlog

empymod Documentation, Release 1.7.3

With the sine/cosine transform (ft='£ffht'/'sin'/'cos"') you can choose which one you want for the
impulse responses. For the switch-on response, however, the sine-transform is enforced, and equally the cosine
transform for the switch-off response. This is because these two do not need to now the field at time 0, E(r, ¢ = 0).

The Quadrature-with-extrapolation and FFTLog are hard-coded to use the cosine transform for step-off responses,
and the sine transform for impulse and step-on responses. The FFT uses the full complex-valued response at the
moment.

For completeness sake, the step-on response is given by

2 [[E
E(r,t)Stron = _ = / R} (T’ w) sin(wt) dw ,
™ Jo W]
and the step-off by
2 [_[E |
E(r,)3t = = / R (?",w) cos(wt) dw .
™ 0 L w

3.1.7 Note on speed, memory, and accuracy

There is the usual trade-off between speed, memory, and accuracy. Very generally speaking we can say that the
DLF is faster than QWE, but QWE is much easier on memory usage. QWE allows you to control the accuracy. A
standard quadrature in the form of QUAD is also provided. QUAD is generally orders of magnitudes slower, and
more fragile depending on the input arguments. However, it can provide accurate results where DLF and QWE
fail.

The kernel can run in parallel using numexpr. This option is activated by setting opt="parallel'. Itis
switched off by default.

I am sure empymod could be made much faster with cleverer coding style or with the likes of cython or numba.
Suggestions and contributions are welcomed!

Memory

By default empymod will try to carry out the calculation in one go, without looping. If your model has many
offsets and many frequencies this can be heavy on memory usage. Even more so if you are calculating time-
domain responses for many times. If you are running out of memory, you should use either loop="off"' or
loop="freq"' toloop over offsets or frequencies, respectively. Use verb=3 to see how many offsets and how
many frequencies are calculated internally.

Depths, Rotation, and Bipole

Depths: Calculation of many source and receiver positions is fastest if they remain at the same depth, as they can
be calculated in one kernel-call. If depths do change, one has to loop over them. Note: Sources or receivers placed
on a layer interface are considered in the upper layer.

Rotation: Sources and receivers aligned along the principal axes x, y, and z can be calculated in one kernel call.
For arbitrary oriented di- or bipoles, 3 kernel calls are required. If source and receiver are arbitrary oriented, 9
(3x3) kernel calls are required.

Bipole: Bipoles increase the calculation time by the amount of integration points used. For a source and a receiver
bipole with each 5 integration points you need 25 (5x5) kernel calls. You can calculate it in 1 kernel call if you set
both integration points to 1, and therefore calculate the bipole as if they were dipoles at their centre.

Example: For 1 source and 10 receivers, all at the same depth, 1 kernel call is required. If all receivers are at
different depths, 10 kernel calls are required. If you make source and receivers bipoles with 5 integration points,
250 kernel calls are required. If you rotate the source arbitrary horizontally, 500 kernel calls are required. If you
rotate the receivers too, in the horizontal plane, 1°000 kernel calls are required. If you rotate the receivers also
vertically, 1500 kernel calls are required. If you rotate the source vertically too, 2250 kernel calls are required.

12 Chapter 3. License information

empymod Documentation, Release 1.7.3

So your calculation will take 2250 times longer! No matter how fast the kernel is, this will take a long time.
Therefore carefully plan how precise you want to define your source and receiver bipoles.

Table 3.1: Example as a table for comparison: 1 source, 10 receiver (one
or many frequencies).

source bipole receiver bipole
kernel calls | intpts | azimuth | dip intpts | azimuth | dip | diff. z
1 1 0/90 0/90 | 1 0/90 0/90 | 1
10 1 0/90 0/90 | 1 0/90 0/90 | 10
250 5 0/90 0/90 | 5 0/90 0/90 | 10
500 5 arb. 0/90 | 5 0/90 0/90 | 10
1000 5 arb. 0/90 | 5 arb. 0/90 | 10
1500 5 arb. 0/90 | 5 arb. arb. | 10
2250 5 arb. arb. 5 arb. arb. | 10
Parallelisation
If opt = 'parallel', a good dozen of the most time-consuming statements are calculated by using the

numexpr package (https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide). These statements are all in
the kernel-functions greenfct, reflections, and fields, and all involve I in one way or another, often
calculating square roots or exponentials. As I" has dimensions (#frequencies, #offsets, #layers, #lambdas), it can
become fairly big.

The package numexpr has to be built with Intel’s VML, otherwise it won’t be used. You can check if it uses
VML with

>>> import numexpr
>>> numexpr.use_vml

The module numexpr uses by default all available cores up to a maximum of 8. You can change this behaviour
to a lower or a higher value with the following command (in the example it is changed to 4):

>>> import numexpr
>>> numexpr.set_num_threads (4)

This parallelisation will make empymod faster if you calculate a lot of offsets/frequencies at once, but slower for
few offsets/frequencies. Best practice is to check first which one is faster. (You can use the benchmark-notebook
in the empymod/example-notebooks-repository.)

Lagged Convolution and Splined Transforms

Both Hankel and Fourier DLF have three options, which can be controlled via the htarg['pts_per_dec']
and ftarg ['pts_per_dec'] parameters:

e pts_per_dec=0 : Standard DLF

* pts_per_dec<0 : Lagged Convolution DLF: Spacing defined by filter base, interpolation is carried out
in the input domain;

* pts_per_dec>0 : Splined DLF: Spacing defined by pt s_per_dec, interpolation is carried out in the
output domain.

Similarly, interpolation can be used for QWE by setting pt s_per_dec to a value bigger than 0.

The Lagged Convolution and Splined options should be used with caution, as they use interpolation and are
therefore less precise than the standard version. However, they can significantly speed up QWE, and massively
speed up DLF. Additionally, the interpolated versions minimizes memory requirements a lot. Speed-up is greater
if all source-receiver angles are identical. Note that setting pt s_per_dec to something else than 0 to calculate
only one offset (Hankel) or only one time (Fourier) will be slower than using the standard version. Similarly, the
standard version is usually the fastest when using the parallel option (numexpr).

3.1. Manual 13

https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide
https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.7.3

QWE: Good speed-up is also achieved for QWE by setting maxint as low as possible. Also, the higher nquad
is, the higher the speed-up will be.

DLF: Big improvements are achieved for long DLF-filters and for many offsets/frequencies (thousands).

Warning: Keep in mind that setting pts_per_dec to something else than 0 uses interpolation, and is
therefore not as accurate as the standard version. Use with caution and always compare with the standard
version to verify if you can apply interpolation to your problem at hand!

Be aware that QUAD (Hankel transform) always use the splined version and always loops over offsets. The
Fourier transforms FFTlog, QWE, and FFT always use interpolation too, either in the frequency or in the time
domain. With the DLF Fourier transform (sine and cosine transforms) you can choose between no interpolation
and interpolation (splined or lagged).

The splined versions of QWE check whether the ratio of any two adjacent intervals is above a certain threshold
(steep end of the wavenumber or frequency spectrum). If it is, it carries out QUAD for this interval instead of
QWE. The threshold is stored in diff_quad, which can be changed within the parameter htarg and ftarg.

For a graphical explanation of the differences between standard DLF, lagged convolution DLF, and splined DLF
for the Hankel and the Fourier transforms see the notebook 7a_DLF-Standard-Lagged-Splined in the
example-notebooks repository.

Looping

By default, you can calculate many offsets and many frequencies all in one go, vectorized (for the DLF), which
is the default. The 1oop parameter gives you the possibility to force looping over frequencies or offsets. This
parameter can have severe effects on both runtime and memory usage. Play around with this factor to find the
fastest version for your problem at hand. It ALWAYS loops over frequencies if ht = "QWE'/'QUAD' or if
ht = 'FHT' and pts_per_dec!=0 (Lagged Convolution or Splined Hankel DLF). All vectorized is very
fast if there are few offsets or few frequencies. If there are many offsets and many frequencies, looping over the
smaller of the two will be faster. Choosing the right looping together with opt = 'parallel' can have a
huge influence.

Vertical components

It is advised to use xdirect = True (the default) if source and receiver are in the same layer to calculate
¢ the vertical electric field due to a vertical electric source,
* configurations that involve vertical magnetic components (source or receiver),
« all configurations when source and receiver depth are exactly the same.

The Hankel transforms methods are having sometimes difficulties transforming these functions.

However, in all other cases it will be faster if you set xdirect = False.

Time-domain land CSEM

The derivation, as it stands, has a near-singular behaviour in the wavenumber-frequency domain when x? = w?e.
This can be a problem for land-domain CSEM calculations if source and receiver are located at the surface between
air and subsurface. Because most transforms do not sample the wavenumber-frequency domain sufficiently to
catch this near-singular behaviour (hence not smooth), which then creates noise at early times where the signal
should be zero. To avoid the issue simply set epermH[0] = epermV[0] = O, hence the relative electric
permittivity of the air to zero. This trick obviously uses the diffusive approximation for the air-layer, it therefore
will not work for very high frequencies (e.g., GPR calculations).

14 Chapter 3. License information

https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.7.3

3.1.8 License

Copyright 2016-2018 Dieter Werthmiiller

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

See the LICENSE- and NOTICE-files on GitHub for more information.

Note: This software was initially (till 01/2017) developed with funding from The Mexican National Council of
Science and Technology (Consejo Nacional de Ciencia y Tecnologia, http://www.conacyt.gob.mx), carried out at
The Mexican Institute of Petroleum IMP (Instituto Mexicano del Petrodleo, http://www.gob.mx/imp).

3.1.9 References

3.2 Roadmap

A collection of ideas of what could be added or improved in empymod. Please get in touch if you would like to
tackle one of these problems!

¢ Additional modelling routines

— tdem (TEM) [empymod#8]: Issues that have to be addressed: ramp waveform, windowing, loop
integration, zero-offset (coincident loop).

* in-loop
% coincident loop
* loop-loop

arbitrary shaped loops

Ramp waveform [empymod#7]

Arbitrary waveform [empymod#7]

Improve the GPR-routine [empymod#9]

Load and save functions to easily store and load model information (resistivity model, acquisition
parameters, and modelling parameters) together with the modelling data (using pickle or shelve).
Probably easier after implementation of the abstraction [empymod#14].

¢ Inversion [empymod#20]: Inversion routines, preferably a selection of different ones.

— Add some clever checks, e.g. as in Key (2012): abort loops if the field is strongly attenuated.
* Additional (semi-)analytical functions (where possible)

— Complete full-space (electric and magnetic source and receiver); space-time domain

— Extend diffusive half-space solution to magnetic sources and receivers; space-frequency and space-
time domains

— Complete half-space
¢ Transforms

— Fourier

3.2. Roadmap 15

http://www.apache.org/licenses/LICENSE-2.0
http://www.conacyt.gob.mx
http://www.gob.mx/imp
https://github.com/empymod/empymod/issues/8
https://github.com/empymod/empymod/issues/7
https://github.com/empymod/empymod/issues/7
https://github.com/empymod/empymod/issues/9
https://github.com/empymod/empymod/issues/14
https://github.com/empymod/empymod/issues/20

empymod Documentation, Release 1.7.3

% Change fft to use discrete sine/cosine transforms instead, as all other Fourier transforms

If previous step is successful, clean up the internal decisions (utils.check_time) when to
use sine/cosine transform (not consistent at the moment, some choice only exists with £fht
impulse responses, fqwe and fftlog use sine for impulse, and all three use sine for step-on
responses and cosine for step-off responses)

— Hankel
#* Add the fht-module from FFTLog for the Hankel transform.
— Hankel and Fourier

Include the method outlined by Mulder et al., 2008, Geophysics (piecewise-cubic Hermite inter-
polation with a FFT) to try to further speed-up the splined versions.

» Extend examples (example-notebooks)
— Add different methods (e.g. DC)
— Reproduce published results

* A cython, numba, or pure C/C++ implementation of the kernel and the t rans form modules. Maybe
not worth it, as it may improve speed, but decrease readability. Both at the same time would be nice.
A fast C/C++-version for calculations (inversions), and a Python-version to tinker with for interested folks.
(Probably combined with default parallelisation, removing the numexpr variant.) Probably not. See closed
issue [empymod#21].

 Abstraction of the code [empymod#14].
* GUL

* Move empymod from channel ‘prisae’ to ‘conda-forge’ (pros/cons?).

3.3 Changelog

3.3.1 v1.7.3 - 2018-07-16

* Small improvements related to speed as a result of the benchmarks introduced in v1.7.2:

— Kernels which do not exist for a given ab are now returned as None from kernel .wavenumber
instead of arrays of zeroes. This permits for some time saving in the transforms. This change is
backwards incompatible if you directly used kernel .wavenumber. Nothing changes for the user-
facing routines in mode 1.

— Adjustments in transform with regard to the None returned by kernel .wavenumber. The
kernels are not checked anymore if they are all zeroes (which can be slow for big arrays). If they are
not None, they will be processed.

— Various small improvements for speed to transform.dlf (i.e. factAng; logl0/log; re-
arranging).

3.3.2 v1.7.2 - 2018-07-07

* Benchmarks: empymod has now a benchmark suite, see empymod/asv.

* Fixed a bug in bipole for time-domain responses with several receivers or sources with different depths.
(Simply failed, as wrong dimension was provided to tem).

¢ Small improvements:
— Various simplifications or cleaning of the code base.

— Small change (for speed) in check if kernels are empty in t ransform.d1f and transform. gwe.

16 Chapter 3. License information

https://github.com/empymod/empymod/issues/21
https://github.com/empymod/empymod/issues/14
https://github.com/empymod/asv

empymod Documentation, Release 1.7.3

3.3.3 v1.7.1 - 2018-06-19

e New routines in empymod.filters.DigitalFilter: Filters can now be saved to or loaded from
pure ascii-files.

* Filters and inversion result from empymod. scripts.fdesign are now by default saved in plain text.
The filters with their internal routine, the inversion result with np . savetxt. Compressed saving can be
achieved by giving a name with a ‘.gz’-ending.

* Change in empymod.utils:
— Renamed _min_paramto_min_res.

— Anisotropy aniso is no longer directly checked for its minimum value. Instead, res*aniso**2, hence
vertical resistivity, is checked with _min_res, and anisotropy is subsequently re-calculated from it.

— The parameters epermH, epermV, mpermH, and mpe rmV can now be set to 0 (or any positive value)
and do not depend on _min_param.

e printinfo: Generally improved; prints now MKL-info (if available) independently of numexpr.
» Simplification of kernel.reflections through re-arranging.
* Bug fixes

* Version of re-submission of the DLF article to geophysics.

3.3.4 v1.7.0 - 2018-05-23

Merge empyscripts into empymod under empymod. scripts.
¢ Clear separation between mandatory and optional imports:

— Mandatory:
* numMpy
* scipy

— Optional:
+ numexpr (for empymod.kernel)
*+ matplotlib (for empymod.scripts.fdesign)
* IPython (for empymod.scripts.printinfo)

* Broaden namespace of empymod. All public functions from the various modules and the modules from
empymod. scripts are now available under empymod directly.

3.3.5 v1.6.2 - 2018-05-21

These changes should make calculations using QWE and QUAD for the Hankel transform for cases which do not
require all kernels faster; sometimes as much as twice as fast. However, it might make calculations which do
require all kernels a tad slower, as more checks had to be included. (Related to [empymod#11]; basically including
for QWE and QUAD what was included for DLF in version 1.6.0.)

e transform:
- dlf:

Improved by avoiding unnecessary multiplications/summations for empty kernels and applying
the angle factor only if it is not 1.

% Empty/unused kernels can now be input as None, e.g. signal=(PJ0, None, None).

* factAng is new optional for the Hankel transform, as is ab.

3.3. Changelog 17

https://github.com/empymod/empymod/issues/11

empymod Documentation, Release 1.7.3

— hgwe: Avoids unnecessary calculations for zero kernels, improving speed for these cases.

— hquad, quad: Avoids unnecessary calculations for zero kernels, improving speed for these cases.
¢ kernel:

— Simplify wavenumber

— Simplify angle_factor

3.3.6 v1.6.1 - 2018-05-05

Secondary field calculation.

¢ Add the possibility to calculate secondary fields only (excluding the direct field) by passing the argument
xdirect=None. The complete xdirect-signature is now (only affects calculation if src and rec are in
the same layer):

— If True, direct field is calculated analytically in the frequency domain.
— If False, direct field is calculated in the wavenumber domain.

— If None, direct field is excluded from the calculation, and only reflected fields are returned (secondary
field).

* Bugfixinmodel.analytical forab=[36, 63] (zeroes) [empymod#16].

3.3.7 v1.6.0 - 2018-05-01

This release is not completely backwards compatible for the main modelling routines in empymod .model, but
almost. Read below to see which functions are affected.

* Improved Hankel DLF [empymod#11]. empymod.kernel.wavenumber always returns three kernels,
PJO, PJ1, and PJ0b. The first one is angle-independent, the latter two depend on the angle. Now, depend-
ing of what source-receiver configuration is chosen, some of these might be zero. If-statements were now
included to avoid the calculation of the DLF, interpolation, and reshaping for 0-kernels, which improves
speed for these cases.

 Unified DLF arguments [empymod#10].

These changes are backwards compatible for all main modelling routines in empymod .model. However,
they are not backwards compatible for the following routines:

empymod.model . fem (removed use_spline),

— empymod.transform. fht (removed use_spline),

— empymod.transform.hgwe (removed use_spline),

— empymod.transform.quad (removed use_spline),

— empymod.transform.dlf (lagged, splined =>pts_per_dec),
— empymod.utils.check_opt (no longer returns use_spline),

— empymod.utils.check_hankel (changes in pts_per_dec), and
— empymod.utils.check_time (changesin pts_per_dec).

The function empymod.utils.spline_backwards_hankel can be used for backwards compati-
bility.

Now the Hankel and Fourier DLF have the same behaviour for pt s_per_dec:
- pts_per_dec = 0: Standard DLF,
— pts_per_dec < 0: Lagged Convolution DLF, and
- pts_per_dec > 0: Splined DLF.

18 Chapter 3. License information

https://github.com/empymod/empymod/issues/16
https://github.com/empymod/empymod/issues/11
https://github.com/empymod/empymod/issues/10

empymod Documentation, Release 1.7.3

There is one exception which is not backwards compatible: Before, if opt=None and
htarg={pts_per_dec: != 0}, the pts_per_dec was not used for the FHT and the QWE. New,
this will be used according to the above definitions.

¢ Bugfix in model .wavenumber for ab=[36, 63] (zeroes).

3.3.8 v1.5.2 - 2018-04-25

* DLF improvements:

— Digital linear filter (DLF) method for the Fourier transform can now be carried out without spline,
providing O for pts_per_dec (or any integer smaller than 1).

— Combine kernel from fht and £fht into d1f, hence separate DLF from other calculations, as is
done with QWE (gwe for hgwe and fgwe).

— Bug fix regarding transform.get_spline_values; a DLF with pts_per_dec can now be
shorter then the corresponding filter.

3.3.9 v1.5.1 - 2018-02-24

¢ Documentation:

— Simplifications: avoid duplication as much as possible between the website (empymod.github.io), the
manual (empymod.readthedocs.io), and the README (github.com/empymod/empymod).

* Website has now only Features and Installation in full, all other information comes in the form of
links.

% README has only information in the form of links.
+ Manual contains the README, and is basically the main document for all information.
— Improvements: Change some remaining md-syntax to rst-syntax.

— FHT -> DLF: replace FHT as much as possible, without breaking backwards compatibility.

3.3.10 v1.5.0 - 2018-01-02

* Minimum parameter values can now be set and verified with utils.set_minimum and utils.
get_minimum.

¢ New Hankel filter wer_ 201_2018.

* opt=parallel has no effect if numexpr is not built against Intel’s VML. (Use import numexpr;
numexpr.use_vml to see if your numexpr uses VML.)

* Bug fixes

* Version of manuscript submission to geophysics for the DLF article.

3.3.11 v1.4.4 - 2017-09-18

[This was meant to be 1.4.3, but due to a setup/pypi/anaconda-issue I had to push it to 1.4.4; so there isn’t really a
version 1.4.3.]
* Add TE/TM split to diffusive ee-halfspace solution.

e Improve kernel .wavenumber for fullspaces.

3.3. Changelog 19

https://empymod.github.io
https://empymod.readthedocs.io
https://github.com/empymod/empymod

empymod Documentation, Release 1.7.3

¢ Extended fQWE and fft1log to be able to use the cosine-transform. Now the cosine-transform with the
real-part frequency response is used internally if a switch-off response (signal=-1) is required, rather
than calculating the switch-on response (with sine-transform and imaginary-part frequency response) and
subtracting it from the DC value.

* Bug fixes
¢ Version of CSEM book.

3.3.12 v1.4.2 - 2017-06-04

* Bugfix: Fixed squeeze in model.analytical with solution="dsplit"'.

* Version of final submission of manuscript to Geophysics.

3.3.13 v1.4.1 - 2017-05-30

[This was meant to be 1.4.0, but due to a setup/pypi/anaconda-issue I had to push it to 1.4.1; so there isn’t really a
version 1.4.0.]

e New home: empymod.github.io as entry point, and the project page on github.com/empymod. All
empymod-repos moved to the new home.

— /prisae/empymod -> /empymod/empymod
— /prisae/empymod-notebooks -> /empymod/example-notebooks
— /prisae/empymod-geo2017 -> /empymod/article-geo2017
— /prisae/empymod-tle2017 -> /empymod/article-tle2017
* Modelling routines:

— New modelling routine model.analytical, which serves as a front-end to kernel.
fullspaceorkernel.halfspace.

— Remove legacy routines model.time and model. frequency. They are covered perfectly by
model.dipole.

— Improved switch-off response (calculate and subtract from DC).
— xdirect adjustments:
* isfullspace now respects xdirect.
* Removed xdirect from model .wavenumber (setto False).
* Kernel:
— Modify kernel .halfspace to use same input as other kernel functions.

— Include time-domain ee halfspace solution into kernel .halfspace; possible to obtain direct, re-
flected, and airwave separately, as well as only fullspace solution (all for the diffusive approximation).

3.3.14 v1.3.0 - 2017-03-30

¢ Add additional transforms and improve QWE:

Conventional adaptive quadrature (QUADPACK) for the Hankel transform;

Conventional FFT for the Fourier transform.

Add diff_quadto htarg/ftarg of QWE, a switch parameter for QWE/QUAD.

Change QWE/QUAD switch from comparing first interval to comparing all intervals.

Add parameters for QUAD (a, b, limit) into htarg/ftarg for QWE.

20 Chapter 3. License information

https://empymod.github.io
https://github.com/empymod

empymod Documentation, Release 1.7.3

* Allow htarg/ftarg as dict additionally to list/tuple.
* Improve model.gpr.
¢ Internal changes:

— Rename internally the sine/cosine filter from £ ft to £ £ht, because of the addition of the Fast Fourier
Transform £ft.

* Clean-up repository
— Move notebooks to /prisae/empymod-notebooks
— Move publications/Geophysics2017 to /prisae/empymod-geo2017
— Move publications/ThelLeadingEdge2017 to /prisae/empymod-tle2017

* Bug fixes and documentation improvements

3.3.15 v1.2.1 - 2017-03-11
¢ Change default filter from key_401_2009 to key_201_2009 (because of warning regarding 401 pt
filter in source code of DIPOLE1D.)
* Since 06/02/2017 installable via pip/conda.
* Bug fixes

3.3.16 v1.2.0 - 2017-02-02

¢ New routine:

— General modelling routine bipole (replaces srcbipole): Model the EM field for arbitrarily ori-
ented, finite length bipole sources and receivers.

¢ Added a test suite:
— Unit-tests of small functions.
— Framework-tests of the bigger functions:
* Comparing to status quo (regression tests),
Comparing to known analytical solutions,
+ Comparing different options to each other,
x Comparing to other 1D modellers (EMmod, DIPOLE1D, GREEN3D).
— Incorporated with Travis CI and Coveralls.
¢ Internal changes:
— Add kernel count (printed if verb > 1).

— numexpr is now only required if opt=="'parallel'. If numexpr is not found, opt is reset to
None and a warning is printed.

— Cleaned-up wavenumber-domain routine.
— theta/phi -> azimuth/dip; easier to understand.
— Refined verbosity levels.

— Lots of changes in utils, with regards to the new routine bipole and with regards to verbosity.
Moved all warnings out from t ransform and model into utils.

* Bug fixes

3.3. Changelog 21

empymod Documentation, Release 1.7.3

3.3.17 v1.1.0 - 2016-12-22

* New routines:
— New srcbipole modelling routine: Model an arbitrarily oriented, finite length bipole source.
— Merge frequency and time into dipole. (frequency and t ime are still available.)
— dipole now supports multiple sources.

* Internal changes:

Replace get_Gauss_Weights with scipy.special.p_roots

- jv(0,x), jv(l,x) ->30(x), 31 (x)

Replace param_shape in utils with _check_var and _check_shape.

Replace xco and yco by angle in kernel.fullspace

Replace f ft1log with python version.

Additional sine-/cosine-filters: key_81_CosSin_2009, key_241_CosSin_2009, and
key_601_CosSin_20009.

* Bug fixes

3.3.18 v1.0.0 - 2016-11-29

* Initial release; state of manuscript submission to geophysics.

3.4 Credits

Thanks to

 Jiirg Hunziker, Kerry Key, and Evert Slob for answering all my questions regarding their codes and
publications (Hunziker et al., 2015, Key, 2009, Key, 2012, Slob et al., 2010).

¢ Evert Slob for the feedback and interaction during the creation of the add-on tmt emod, which was devel-
oped for the creation of github.com/empymod/csem-ziolkowski-and-slob.

* Kerry Key and Evert Slob for their inputs and feedback during the development of the add-on fdesign
(see github.com/empymod/article-fdesign).

3.5 Code

3.5.1 model — Model EM-responses
EM-modelling routines. The implemented routines might not be the fastest solution to your specific problem. Use
these routines as template to create your own, problem-specific modelling routine!
Principal routines:
* bipole
e dipole

The main routine is bipole, which can model bipole source(s) and bipole receiver(s) of arbitrary direction, for
electric or magnetic sources and receivers, both in frequency and in time. A subset of bipole is dipole, which
models infinitesimal small dipoles along the principal axes X, y, and z.

Further routines are:

* analytical: Calculate analytical fullspace and halfspace solutions.

22 Chapter 3. License information

https://doi.org/10.1190/geo2013-0411.1
https://doi.org/10.1190/1.3058434
https://doi.org/10.1190/geo2011-0237.1
https://doi.org/10.2528/PIER10052807
https://github.com/empymod/csem-ziolkowski-and-slob
https://github.com/empymod/article-fdesign

empymod Documentation, Release 1.7.3

* wavenumber: Calculate the electromagnetic wavenumber-domain solution.
e gpr: Calculate the Ground-Penetrating Radar (GPR) response.

The wavenumber routine can be used if you are interested in the wavenumber-domain result, without Hankel
nor Fourier transform. It calls straight the kernel. The gpr-routine convolves the frequency-domain result with
a wavelet, and applies a gain to the time-domain result. This function is still experimental.

The modelling routines make use of the following two core routines:

¢ fem: Calculate wavenumber-domain electromagnetic field and carry out the Hankel transform
to the frequency domain.

* tem: Carry out the Fourier transform to time domain after fem.

empymod.model .bipole (src, rec, depth, res, freqtime, signal=None, aniso=None, epermH=None,
epermV=None, mpermH=None, mpermV=None, msrc=False, srcpts=1I,
mrec=False, recpts=1, strength=0, xdirect=True, ht='fht’, htarg=None,

ft="sin’, ftarg=None, opt=None, loop=None, verb=2)
Return the electromagnetic field due to an electromagnetic source.

Calculate the electromagnetic frequency- or time-domain field due to arbitrary finite electric or magnetic
bipole sources, measured by arbitrary finite electric or magnetic bipole receivers. By default, the electro-
magnetic response is normalized to to source and receiver of 1 m length, and source strength of 1 A.

Parameters src, rec : list of floats or arrays
Source and receiver coordinates (m):
* [x0, x1, y0, y1, z0, z1] (bipole of finite length)
* [X,y, z, azimuth, dip] (dipole, infinitesimal small)
Dimensions:

* The coordinates X, y, and z (dipole) or x0, x1, y0, y1, z0, and z1 (bipole) can
be single values or arrays.

» The variables x and y (dipole) or x0, x1, y0, and y1 (bipole) must have the
same dimensions.

* The variable z (dipole) or z0 and z1 (bipole) must either be single values or
having the same dimension as the other coordinates.

* The variables azimuth and dip must be single values. If they have different
angles, you have to use the bipole-method (with srcpts/recpts = 1, so it is
calculated as dipoles).

Angles (coordinate system is left-handed, positive z down (East-North-Depth):
¢ azimuth (°): horizontal deviation from x-axis, anti-clockwise.
¢ dip (°): vertical deviation from xy-plane downwards.
Sources or receivers placed on a layer interface are considered in the upper layer.
depth : list
Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).
res : array_like
Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.
freqtime : array_like
Frequencies f (Hz) if signal == None, else times t (s); (f, t > 0).
signal : {None, 0, 1, -1}, optional
Source signal, default is None:

* None: Frequency-domain response

3.5. Code 23

empymod Documentation, Release 1.7.3

* -1 : Switch-off time-domain response
* 0: Impulse time-domain response
* +1 : Switch-on time-domain response
aniso : array_like, optional
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.
epermH, epermV : array_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH
= #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH =
#mpermV = #res. Default is ones.

msrc, mrec : boolean, optional
If True, source/receiver (msrc/mrec) is magnetic, else electric. Default is False.
srepts, recpts : int, optional
Number of integration points for bipole source/receiver, default is 1:
* srcpts/recpts < 3 : bipole, but calculated as dipole at centre
* srcpts/recpts >= 3 : bipole
strength : float, optional
Source strength (A):

 If 0, output is normalized to source and receiver of 1 m length, and source
strength of 1 A.

» If =0, output is returned for given source and receiver length, and source
strength.

Default is 0.
xdirect : bool or None, optional
Direct field calculation (only if src and rec are in the same layer):
o If True, direct field is calculated analytically in the frequency domain.
« If False, direct field is calculated in the wavenumber domain.

* If None, direct field is excluded from the calculation, and only reflected fields
are returned (secondary field).

Defaults to True.
ht : {‘tht’, ‘qwe’, ‘quad’}, optional

Flag to choose either the Digital Linear Filter method (FHT, Fast Hankel
Transform), the Quadrature-With-Extrapolation (QWE), or a simple Quadrature
(QUAD) for the Hankel transform. Defaults to ‘fht’.

htarg : dict or list, optional
Depends on the value for ht:
o If ht = ‘fht’: [thtfilt, pts_per_dec]:

— fhtfilt: string of filter name in empymod. filters or the filter method
itself. (default: empymod.filters.key_201_2009())

— pts_per_dec: points per decade; (default: 0)
+ If 0: Standard DLF.

24 Chapter 3. License information

empymod Documentation, Release 1.7.3

If < 0: Lagged Convolution DLF.
% If > 0: Splined DLF
* If ht = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec,

diff_quad, a, b, limit]:

rtol: relative tolerance (default: 1e-12)

atol: absolute tolerance (default: 1e-30)

nquad: order of Gaussian quadrature (default: 51)

maxint: maximum number of partial integral intervals (default:
40)

pts_per_dec: points per decade; (default: 0)
% If 0, no interpolation is used.
If > 0, interpolation is used.

— diff_quad: criteria when to swap to QUAD (only relevant if
opt="spline’) (default: 100)

— a: lower limit for QUAD (default: first interval from QWE)
— b: upper limit for QUAD (default: last interval from QWE)

— limit: limit for quad (default: maxint)

o If ht = ‘quad’: [atol, rtol, limit, Imin, Imax, pts_per_dec]:

rtol: relative tolerance (default: 1e-12)

atol: absolute tolerance (default: 1e-20)

limit: An upper bound on the number of subintervals used in the adaptive
algorithm (default: 500)

— Imin: Minimum wavenumber (default 1e-6)
— Imax: Maximum wavenumber (default 0.1)
— pts_per_dec: points per decade (default: 40)

The values can be provided as dict with the keywords, or as list. However, if pro-
vided as list, you have to follow the order given above. A few examples, assuming
ht = gwe:

* Only changing rtol: {‘rtol’: le-4} or [le-4] or le-4
* Changing rtol and nquad: {‘rtol’: le-4, ‘nquad’: 101} or [1e-4, ’, 101]
¢ Only changing diff_quad: {‘diffquad’: 10} or [*’, ’, ©’, ", ©°, 10]

ft: {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional

Only used if signal != None. Flag to choose either the Digital Linear Filter
method (Sine- or Cosine-Filter), the Quadrature-With-Extrapolation (QWE), the
FFTLog, or the FFT for the Fourier transform. Defaults to ‘sin’.

ftarg : dict or list, optional
Only used if signal !=None. Depends on the value for £t:
o If £t = ‘sin’ or ‘cos’: [fftfilt, pts_per_dec]:

— fftfilt: string of filter name in empymod. filters or the fil-
ter method itself. (Default: empymod.filters.
key_201_CosSin_2012())

3.5. Code

25

empymod Documentation, Release 1.7.3

— pts_per_dec: points per decade; (default: -1)
* If 0: Standard DLF.
* If < 0: Lagged Convolution DLF.
% If > 0: Splined DLF
o If £t = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec]:

— rtol: relative tolerance (default: 1e-8)

atol: absolute tolerance (default: 1e-20)

nquad: order of Gaussian quadrature (default: 21)

maxint: maximum number of partial integral intervals
(default: 200)

pts_per_dec: points per decade (default: 20)
diff_quad: criteria when to swap to QUAD (default: 100)

a: lower limit for QUAD (default: first interval from QWE)
b: upper limit for QUAD (default: last interval from QWE)

limit: limit for quad (default: maxint)
o If £t = ‘fftlog’: [pts_per_dec, add_dec, q:
— pts_per_dec: sampels per decade (default: 10)
— add_dec: additional decades [left, right] (default: [-2, 1])
— q: exponent of power law bias (default: 0); -1 <=q<=1
o If £t = ‘fft’: [dfreq, nfreq, ntot]:

— dfreq: Linear step-size of frequencies (default: 0.002)

nfreq: Number of frequencies (default: 2048)

ntot: Total number for FFT; difference between nfreq and
ntot is padded with zeroes. This number is ideally a
power of 2, e.g. 2048 or 4096 (default: nfreq).

pts_per_dec : points per decade (default: None)

Padding can sometimes improve the result, not always. The
default samples from 0.002 Hz - 4.096 Hz. If pts_per_dec
is set to an integer, calculated frequencies are logarithmically
spaced with the given number per decade, and then interpo-
lated to yield the required frequencies for the FFT.

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. See htarg for a few
examples.

opt : {None, ‘parallel’}, optional
Optimization flag. Defaults to None:
* None: Normal case, no parallelization nor interpolation is used.

o If ‘parallel’, the package numexpr is used to evaluate the most ex-
pensive statements. Always check if it actually improves performance
for a specific problem. It can speed up the calculation for big arrays,
but will most likely be slower for small arrays. It will use all available
cores for these specific statements, which all contain Gamma in one
way or another, which has dimensions (#frequencies, #offsets, #lay-
ers, #lambdas), therefore can grow pretty big. The module numexpr

26

Chapter 3. License information

empymod Documentation, Release 1.7.3

uses by default all available cores up to a maximum of 8. You can
change this behaviour to your desired number of threads nthreads
with numexpr.set_num_threads (nthreads).

» The value ‘spline’ is deprecated and will be removed. See htarg
instead for the interpolated versions.

The option ‘parallel’ only affects speed and memory usage, whereas ‘spline’ also
affects precision! Please read the note in the README documentation for more
information.

loop : {None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies (‘freq’)
or over offsets (‘off”), default is None. It always loops over frequencies if ht =
'gqwe' or if opt = 'spline'. Calculating everything vectorized is fast for
few offsets OR for few frequencies. However, if you calculate many frequencies
for many offsets, it might be faster to loop over frequencies. Only comparing the
different versions will yield the answer for your specific problem at hand!

verb : {0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:
* 0: Print nothing.
* 1: Print warnings.
* 2: Print additional runtime and kernel calls
* 3: Print additional start/stop, condensed parameter information.
* 4: Print additional full parameter information

Returns EM : ndarray, (nfreq, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):
e If rec is electric, returns E [V/m].
* If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided by
seconds [1/s].

However, source and receiver are normalised (unless strength !=0). So for instance
in the electric case the source strength is 1 A and its length is 1 m. So the electric
field could also be written as [V/(A.m2)].

In the magnetic case the source strength is given by iwpgAI€, where A is the
loop area (m2), and I° the electric source strength. For the normalized magnetic
source A = 1m? and I¢ = 1Ampere. A magnetic source is therefore frequency
dependent.

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are removed.
See also:

fem Electromagnetic frequency-domain response.
tem Electromagnetic time-domain response.

Examples

>>> import numpy as np

>>> from empymod import bipole

>>> # x-directed bipole source: x0, x1, y0, yl, z0, zl
>>> src = [-50, 50, 0, O, 100, 100]

3.5. Code

27

empymod Documentation, Release 1.7.3

>>> # x-directed dipole source-array: x, y, z, azimuth, dip
>>> rec = [np.arange(l, 11)%500, np.zeros(10), 200, 0, 0]
>>> # layer boundaries
>>> depth = [0, 300, 1000, 1050]
>>> # layer resistivities
>>> res = [le20, .3, 1, 50, 1]
>>> # Frequency
>>> freq = 1
>>> # Calculate electric field due to an electric source at 1 Hz.
>>> # [msrc = mrec = True (default)]
>>> EMfield = bipole(src, rec, depth, res, freq, verb=4)
empymod START
depth [m] 0 300 1000 1050
res [Ohm.m] 1E+20 0.3 1 50 1
aniso [-] 11111
epermH [-] 11111
epermV [-] 11111
mpermH [-] 11111
mpermV [-] 11111
frequency [Hz] : 1
Hankel : DLF (Fast Hankel Transform)
> Filter : Key 201 (2009)
> DLF type : Standard
Kernel Opt. : None
Loop over : None (all vectorized)
Source (s) : 1 bipole(s)
> intpts : 1 (as dipole)
> length [m] 100
> xX_C [m] 0
> y_C [m] 0
> z_cC [m] 100
> azimuth [°] 0
> dip [°] 0
Receiver (s) : 10 dipole(s)
> X [m] : 500 - 5000 : 10 [min-max; #]
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
>y [m] : 0 -0 : 10 [min-max; #]
: 00 000O0O0OOODO
> z [m] : 200
> azimuth [°] : O
> dip [°1 : O
Required ab's : 11
empymod END; runtime = 0:00:00.005536 :: 1 kernel call(s)
>>> print (EMfield)
[1.68809346e-10 -3.08303130e-103j -8.77189179%9e-12 —-3.76920235e-117
-3.46654704e-12 -4.87133683e-127 -3.60159726e-13 -1.12434417e-127
1.87807271e-13 -6.21669759%9e-137 1.97200208e-13 -4.38210489e-137
1.44134842e-13 -3.17505260e-13j 9.92770406e-14 -2.33950871e-13j
6.75287598e-14 -1.74922886e-137 4.62724887e-14 -1.32266600e-137]

empymod.model.dipole (src, rec, depth, res, freqtime, signal=None, ab=11, aniso=None,
epermH=None, epermV=None, mpermH=None, mpermV=None, xdi-
rect=True, ht="fht’, htarg=None, ft=’sin’, ftarg=None, opt=None,
loop=None, verb=2)
Return the electromagnetic field due to a dipole source.

Calculate the electromagnetic frequency- or time-domain field due to infinitesimal small electric or mag-
netic dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and
receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well

28 Chapter 3. License information

empymod Documentation, Release 1.7.3

as all receivers are at the same depth.

Use the functions bipole to calculate dipoles with arbitrary angles or bipoles of finite length and arbitrary
angle.

The function dipole could be replaced by bipole (all there is to do is translate ab into msrc, mrec,
azimuth’sand dip’s). However, dipole is kept separately to serve as an example of a simple modelling
routine that can serve as a template.
Parameters src, rec : list of floats or arrays
Source and receiver coordinates (m): [X, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

Sources or receivers placed on a layer interface are considered in the upper
layer.
depth : list
Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).
res : array_like
Horizontal resistivities tho_h (Ohm.m); #res = #depth + 1.
freqtime : array_like
Frequencies f (Hz) if signal == None, else times t (s); (f, t > 0).
signal : {None, 0, 1, -1}, optional
Source signal, default is None:

* None: Frequency-domain response
e -1 : Switch-off time-domain response
* 0 : Impulse time-domain response

* +1 : Switch-on time-domain response
ab : int, optional
Source-receiver configuration, defaults to 11.

electric source magnetic source
X y zZ X y zZ
electric x | 11 12 13 14 15 16
receiver y | 21 22 23 24 25 26
z | 31 32 33 34 35 36
magnetic | x | 41 42 43 44 45 46
receiver y | 51 52 53 54 55 56
z | 61 62 63 64 65 66

aniso : array_like, optional
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to
ones.

epermH, epermV : array_like, optional
Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional
Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res. Default is ones.

xdirect : bool or None, optional
Direct field calculation (only if src and rec are in the same layer):

 If True, direct field is calculated analytically in the frequency
domain.

 If False, direct field is calculated in the wavenumber domain.

* If None, direct field is excluded from the calculation, and only
reflected fields are returned (secondary field).

Defaults to True.

3.5. Code 29

empymod Documentation, Release 1.7.3

ht : {“tht’, ‘qwe’, ‘quad’ }, optional
Flag to choose either the Digital Linear Filter method (FHT, Fast Han-
kel Transform), the Quadrature-With-Extrapolation (QWE), or a simple
Quadrature (QUAD) for the Hankel transform. Defaults to ‘tht’.

htarg : dict or list, optional
Depends on the value for ht:

o If ht = ‘ftht’: [fhtfilt, pts_per_dec]:

— fhtfilt: string of filter name in empymod. filters or
the filter method itself. (default: empymod.
filters.key_201_2009())

— pts_per_dec: points per decade; (default: 0)
% If 0: Standard DLF.
% If < 0: Lagged Convolution DLF.
% If > 0: Splined DLF
* If ht = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec,

diff_quad, a, b, limit]:

— rtol: relative tolerance (default: le-12)
— atol: absolute tolerance (default: 1e-30)
— nquad: order of Gaussian quadrature (default: 51)

— maxint: maximum number of partial integral intervals
(default: 40)

— pts_per_dec: points per decade; (default: 0)
* If 0, no interpolation is used.
If > 0, interpolation is used.

— diff_quad: criteria when to swap to QUAD (only rele-
vant if opt="spline’) (default: 100)

— a: lower limit for QUAD (default: first interval from
QWE)

— b: upper limit for QUAD (default: last interval from
QWE)

— limit: limit for quad (default: maxint)

* If ht = ‘quad’: [atol, rtol, limit, Imin, lmax, pts_per_dec]:

rtol: relative tolerance (default: 1e-12)

atol: absolute tolerance (default: 1e-20)

limit: An upper bound on the number of subintervals used
in the adaptive algorithm (default: 500)

— Imin: Minimum wavenumber (default 1e-6)
— Imax: Maximum wavenumber (default 0.1)
— pts_per_dec: points per decade (default: 40)

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. A few examples,
assuming ht = qwe:

¢ Only changing rtol: {‘rtol’: le-4} or [le-4] or le-4

30 Chapter 3. License information

empymod Documentation, Release 1.7.3

* Changing rtol and nquad: {‘rtol’: le-4, ‘nquad’: 101} or [le-4, ,
101]
¢ Only changing diff_quad: {‘diffquad’: 10} or [, ©*, ©, <, ©*, 10]
ft: {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional
Only used if signal != None. Flag to choose either the Digital Linear
Filter method (Sine- or Cosine-Filter), the Quadrature-With-Extrapolation
(QWE), the FFTLog, or the FFT for the Fourier transform. Defaults to ‘sin’.
ftarg : dict or list, optional
Only used if signal !=None. Depends on the value for £t:

o If £t = ‘sin’ or ‘cos’: [fftfilt, pts_per_dec]:

— fftfilt: string of filter name in empymod. filters or
the filter method itself. (Default: empymod.
filters.key_201_CosSin_2012())

— pts_per_dec: points per decade; (default: -1)
If 0: Standard DLF.
% If < 0: Lagged Convolution DLE.
% If > 0: Splined DLF

o If £t = ‘qwe’: [rtol, atol, nquad, maxint, pts_per_dec]:

rtol: relative tolerance (default: 1e-8)

atol: absolute tolerance (default: 1e-20)

nquad: order of Gaussian quadrature (default: 21)

maxint: maximum number of partial integral intervals
(default: 200)

pts_per_dec: points per decade (default: 20)

diff_quad: criteria when to swap to QUAD (default: 100)

a: lower limit for QUAD (default: first interval from QWE)

b: upper limit for QUAD (default: last interval from QWE)

limit: limit for quad (default: maxint)
o If £t = ‘fftlog’: [pts_per_dec, add_dec, q]:
— pts_per_dec: sampels per decade (default: 10)
— add_dec: additional decades [left, right] (default: [-2, 1])
— q: exponent of power law bias (default: 0); -1 <=q<=1
o If £t = “fft’: [dfreq, nfreq, ntot]:

— dfreq: Linear step-size of frequencies (default:
0.002)

— nfreq: Number of frequencies (default: 2048)

— ntot: Total number for FFT; difference between nfreq and
ntot is padded with zeroes. This number is
ideally a power of 2, e.g. 2048 or 4096 (default:
nfreq).

— pts_per_dec : points per decade (default: None)

Padding can sometimes improve the result, not always.
The default samples from 0.002 Hz - 4.096 Hz. If
pts_per_dec is set to an integer, calculated frequencies
are logarithmically spaced with the given number per

3.5.

Code

31

empymod Documentation, Release 1.7.3

decade, and then interpolated to yield the required fre-
quencies for the FFT.

The values can be provided as dict with the keywords, or as list. However, if
provided as list, you have to follow the order given above. See htarg for a
few examples.

opt : {None, ‘parallel’ }, optional
Optimization flag. Defaults to None:

* None: Normal case, no parallelization nor interpolation is used.

o If ‘parallel’, the package numexpr is used to evaluate the most
expensive statements. Always check if it actually improves per-
formance for a specific problem. It can speed up the calculation
for big arrays, but will most likely be slower for small arrays. It
will use all available cores for these specific statements, which
all contain Gamma in one way or another, which has dimensions
(#frequencies, #offsets, #layers, #lambdas), therefore can grow
pretty big. The module numexpr uses by default all available
cores up to a maximum of 8. You can change this behaviour
to your desired number of threads nthreads with numexpr.
set_num_threads (nthreads).

* The value ‘spline’ is deprecated and will be removed. See
htarg instead for the interpolated versions.

The option ‘parallel” only affects speed and memory usage, whereas ‘spline’
also affects precision! Please read the note in the README documentation
for more information.

loop : {None, ‘freq’, ‘off’}, optional
Define if to calculate everything vectorized or if to loop over frequencies
(‘freq’) or over offsets (‘off”), default is None. It always loops over fre-
quencies if ht = 'qwe' orif opt = 'spline'. Calculating every-
thing vectorized is fast for few offsets OR for few frequencies. However, if
you calculate many frequencies for many offsets, it might be faster to loop
over frequencies. Only comparing the different versions will yield the an-
swer for your specific problem at hand!

verb : {0, 1, 2, 3, 4}, optional
Level of verbosity, default is 2:

* (: Print nothing.

* 1: Print warnings.

* 2: Print additional runtime and kernel calls

* 3: Print additional start/stop, condensed parameter information.

* 4: Print additional full parameter information
Returns EM : ndarray, (nfreq, nrec, nsrc)
Frequency- or time-domain EM field (depending on signal):

* If rec is electric, returns E [V/m].
* If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided
by seconds [1/s].

Howeyver, source and receiver are normalised. So for instance in the electric
case the source strength is 1 A and its length is 1 m. So the electric field
could also be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are
removed.
See also:

32 Chapter 3. License information

empymod Documentation, Release 1.7.3

bipole FElectromagnetic field due to an electromagnetic source.

fem
tem

Electromagnetic frequency-domain response.
Electromagnetic time-domain response.

Examples

>>> import numpy as np

>>> from empymod import dipole

>>> src = [0, 0, 100]

>>> rec = [np.arange(l, 11)x500, np.zeros(10), 200]

>>> depth = [0, 300, 1000, 1050]

>>> res = [le20, .3, 1, 50, 1]

>>> EMfield = dipole(src, rec, depth, res, fregtime=1l, verb=0)

>>> print (EMfield)

[1.68809346e-10 -3.08303130e-10j -8.77189179%9e-12 -3.76920235e-117

—-3.46654704e-12 -4.87133683e-127 -3.60159726e-13 -1.12434417e-127
1.87807271e-13 -6.21669759%9e-137 1.97200208e-13 —-4.38210489%9e-137
1.44134842e-13 -3.17505260e-13j 9.92770406e—-14 -2.33950871e-137
6.75287598e—-14 -1.74922886e-137 4.62724887e-14 -1.32266600e-137]
empymod.model.analytical (src, rec, res, freqtime, solution="fs’, signal=None, ab=11,

aniso=None, epermH=None, epermV=None, mpermH=None,
mpermV=None, verb=2)

Return the analytical full- or half-space solution.

Calculate the electromagnetic frequency- or time-domain field due to infinitesimal small electric or mag-

netic

dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and

receivers are directed along the principal directions x, y, or z, and all sources are at the same depth, as well

as all

receivers are at the same depth.

In the case of a halfspace the air-interface is located at z = 0 m.

You can call the functions fullspace and halfspace in kernel . py directly. This interface is just to
provide a consistent interface with the same input parameters as for instance for dipole.

This function yields the same result if solution="£fs' as dipole, if the model is a fullspace.
Included are:

* Full fullspace solution (solution="'£fs") for ee-, me-, em-, mm-fields, only frequency do-
main, [Hunziker_et_al_2015].

* Diffusive fullspace solution (solution="dfs") for ee-fields, [Slob_et_al _2010].

* Diffusive halfspace solution (solution="dhs") for ee-fields, [Slob_et_al_2010].

* Diffusive direct- and reflected field and airwave (solution='dsplit') for ee-fields,
[Slob_et_al_2010].

* Diffusive direct- and reflected field and airwave (solution="'dtetm') for ee-fields, split
into TE and TM mode [Slob_et_al_2010].

Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [X, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

res : float
Horizontal resistivity rho_h (Ohm.m).

freqtime : array_like
Frequencies f (Hz) if signal == None, else times t (s); (f, t > 0).

solution : str, optional
Defines which solution is returned:

e ‘fs’ : Full fullspace solution (ee-, me-, em-, mm-fields); f-
domain.

» ‘dfs’ : Diffusive fullspace solution (ee-fields only).

3.5. Code

33

empymod Documentation, Release 1.7.3

» ‘dhs’ : Diffusive halfspace solution (ee-fields only).

 ‘dsplit’ [Diffusive direct- and reflected field and airwave] (ee-
fields only).

o ‘dtetm’ [as dsplit, but direct fielt TE, TM; reflected field TE,
TM,] and airwave (ee-fields only).
signal : {None, 0, 1, -1}, optional
Source signal, default is None:

* None: Frequency-domain response
* -1 : Switch-off time-domain response
* 0 : Impulse time-domain response

* +1 : Switch-on time-domain response
ab : int, optional
Source-receiver configuration, defaults to 11.

electric source magnetic source
X y V/ X y Y/
electric x | 11 12 13 14 15 16
receiver y | 21 22 23 24 25 26
z | 31 32 33 34 35 36
magnetic | x | 41 42 43 44 45 46
receiver |y | 51 52 53 54 55 56
z | 61 62 63 64 65 66

aniso : float, optional
Anisotropy lambda = sqrt(rho_v/rho_h) (-); defaults to one.

epermH, epermV : float, optional
Relative horizontal/vertical electric permittivity epsilon_h/epsilon_v (-); de-
fault is one. Ignored for the diffusive solution.

mpermH, mpermV : float, optional
Relative horizontal/vertical magnetic permeability mu_h/mu_v (-); default
is one. Ignored for the diffusive solution.

verb : {0, 1, 2, 3, 4}, optional
Level of verbosity, default is 2:

* (: Print nothing.

* 1: Print warnings.

* 2: Print additional runtime

* 3: Print additional start/stop, condensed parameter information.

* 4: Print additional full parameter information
Returns EM : ndarray, (nfreq, nrec, nsrc)
Frequency- or time-domain EM field (depending on signal):

e If rec is electric, returns E [V/m].
* If rec is magnetic, returns B [T] (not H [A/m]!).

In the case of the impulse time-domain response, the unit is further divided
by seconds [1/s].

However, source and receiver are normalised. So for instance in the electric
case the source strength is 1 A and its length is 1 m. So the electric field
could also be written as [V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are
removed.

34 Chapter 3. License information

empymod Documentation, Release 1.7.3

If solution="dsplit"', three ndarrays are returned: direct, reflect, air.

If solution='dtetm', five ndarrays are returned: direct_TE, di-
rect_TM, reflect_TE, reflect_TM, air.

empymod.model . wavenumber (src,

Examples

>>> import numpy as np

>>> from empymod import analytical

>>> src = [0, 0, O]

>>> rec = [np.arange(l, 11)x500, np.zeros(10), 200]

>>> res = 50

>>> EMfield = analytical(src, rec, res, fregtime=1, verb=0)

>>> print (EMfield)

[4.03091405e-08 -9.69163818e-107] 6.97630362e-09 -4.88342150e-107]
2.15205979e-09 -2.97489809e-107 8.90394459e~-10 -1.99313433e-107
4.32915802e-10 -1.40741644e-107 2.31674165e-10 -1.02579391e-107
1.31469130e-10 -7.62770461le-1173 7.72342470e-11 -5.74534125e-1173
4.61480481e-11 -4.36275540e-117 2.76174038e-11 -3.32860932e-117]

empymod.model .gpr (src, rec, depth, res, freqtime, cf, gain=None, ab=11, aniso=None,

epermH=None, epermV=None, mpermH=None, mpermV=None, xdirect=True,

ht="quad’, htarg=None, ft="fft’, ftarg=None, opt=None, loop=None, verb=2)
Return the Ground-Penetrating Radar signal.

THIS FUNCTION IS EXPERIMENTAL, USE WITH CAUTION.

It is rather an example how you can calculate GPR responses; however, DO NOT RELY ON IT! It works
only well with QUAD or QWE (quad, gwe) for the Hankel transform, and with FFT (£ £t) for the Fourier
transform.

It calls internally dipole for the frequency-domain calculation. It subsequently convolves the response
with a Ricker wavelet with central frequency cf. If signal!=None, it carries out the Fourier transform and
applies a gain to the response.

For input parameters see the function dipole, except for:

Parameters cf : float
Centre frequency of GPR-signal, in Hz. Sensible values are between 10
MHz and 3000 MHz.

gain : float

Power of gain function. If None, no gain is applied. Only used if sig-
nal!=None.

Returns EM : ndarray
GPR response

rec, depth,
epermH=None,

verb=2)
Return the electromagnetic wavenumber-domain field.

res, freq, wavenumber, ab=11, aniso=None,
epermV=None, mpermH=None, mpermV=None,

Calculate the electromagnetic wavenumber-domain field due to infinitesimal small electric or magnetic
dipole source(s), measured by infinitesimal small electric or magnetic dipole receiver(s); sources and re-
ceivers are directed along the principal directions X, y, or z, and all sources are at the same depth, as well as
all receivers are at the same depth.
Parameters src, rec : list of floats or arrays

Source and receiver coordinates (m): [X, y, z]. The x- and y-coordinates can

be arrays, z is a single value. The x- and y-coordinates must have the same

dimension. The x- and y-coordinates only matter for the angle-dependent

factor.

Sources or receivers placed on a layer interface are considered in the upper
layer.

3.5. Code

35

empymod Documentation, Release 1.7.3

depth : list
Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).
res : array_like
Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.
freq : array_like
Frequencies f (Hz), used to calculate etaH/V and zetaH/V.
wavenumber : array
Wavenumbers lambda (1/m)
ab : int, optional
Source-receiver configuration, defaults to 11.

electric source magnetic source
X y V/ X y V/
electric x | 11 12 13 14 15 16
receiver y | 21 22 23 24 25 26
z | 31 32 33 34 35 36
magnetic | x | 41 42 43 44 45 46
receiver |y | 51 52 53 54 55 56
z | 61 62 63 64 65 66

aniso : array_like, optional
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to
ones.

epermH, epermV : array_like, optional
Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res. Default is ones.

mpermH, mpermV : array_like, optional
Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res. Default is ones.

verb : {0, 1, 2, 3, 4}, optional
Level of verbosity, default is 2:

* (: Print nothing.

* 1: Print warnings.

* 2: Print additional runtime and kernel calls

* 3: Print additional start/stop, condensed parameter information.

* 4: Print additional full parameter information
Returns PJ0, PJ1 : array
Wavenumber-domain EM responses:

¢ PJO: Wavenumber-domain solution for the kernel with a Bessel
function of the first kind of order zero.

e PJ1: Wavenumber-domain solution for the kernel with a Bessel
function of the first kind of order one.
See also:

dipole Electromagnetic field due to an electromagnetic source (dipoles).
bipole Electromagnetic field due to an electromagnetic source (bipoles).
fem Electromagnetic frequency-domain response.

tem Electromagnetic time-domain response.

Examples

>>> import numpy as np
>>> from empymod.model import wavenumber
>>> src = [0, 0, 100]

36 Chapter 3. License information

empymod Documentation, Release 1.7.3

>>> rec = [5000, 0, 200]
>>> depth = [0, 300, 1000, 1050]

>>> res = [le20, .3, 1, 50, 1]

>>> freq = 1

>>> wavenrs = np.logspace(-3.7, -3.6, 10)

>>> PJ0, PJl = wavenumber (src, rec, depth, res, freq, wavenrs, verb=0)

>>> print (PJO)
[=1.02638329e-08 +4.91531529e-097] -1.05289724e-08 +5.04222413e-097
-1.08009148e-08 +5.17238608e-097 -1.10798310e-08 +5.30588284e-09]
-1.13658957e-08 +5.44279805e-097 -1.16592877e-08 +5.58321732e-097
-1.19601897e-08 +5.72722830e-097 -1.22687889e-08 +5.87492067e-097
-1.25852765e-08 +6.02638626e-097 -1.29098481e-08 +6.18171904e-097]
>>> print (PJ1)
[.79483705e-10 -6.59235332e-107]
.98325814e-10 -7.30068377e-107
.19119282e-10 -8.08503709e-107
.42062030e-10 -8.95356636e-107]
.67371420e-10 -9.91530051e-107

.88672497e-10 -6.93749344e-107
.08466693e-10 —-7.68286748e-10]
.30308887e-10 —-8.50823701e-107
.54406501e-10 -9.42218177e-107
.80987292e-10 -1.04342036e-097]

NN N
NN NN

empymod.model . £fem (ab, off, angle, zsrc, zrec, Isrc, lrec, depth, freq, etaH, etaV, zetaH, zetaV, xdirect,

isfullspace, ht, htarg, use_ne_eval, msrc, mrec, loop_freq, loop_off, conv=True)
Return the electromagnetic frequency-domain response.

This function is called from one of the above modelling routines. No input-check is carried out here. See
the main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful
for inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

empymod.model.tem (fEM, off, freq, time, signal, ft, ftarg, conv=True)
Return the time-domain response of the frequency-domain response fEM.

This function is called from one of the above modelling routines. No input-check is carried out here. See
the main description of model for information regarding input and output parameters.

This function can be directly used if you are sure the provided input is in the correct format. This is useful
for inversion routines and similar, as it can speed-up the calculation by omitting input-checks.

3.5.2 kernel — Kernel calculation

Kernel of empymod, calculates the wavenumber-domain electromagnetic response. Plus analytical full- and half-
space solutions.

The functions wavenumber, angle_factor, fullspace, greenfct, reflections, and fields are
based on source files (specified in each function) from the source code distributed with [Hunziker_et_al_2015],
which can be found at software.seg.org/2015/0001. These functions are (c) 2015 by Hunziker et al. and the
Society of Exploration Geophysicists, http://software.seg.org/disclaimer.txt. Please read the NOTICE-file in the
root directory for more information regarding the involved licenses.

empymod. kernel .wavenumber (zsrc, zrec, Isrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab,
xdirect, msrc, mrec, use_ne_eval)
Calculate wavenumber domain solution.
Return the wavenumber domain solutions PJ0, PJ1, and PJ0b, which have to be transformed with a Han-
kel transform to the frequency domain. PJ0/PJ0b and PJ1 have to be transformed with Bessel functions
of order 0 (Jy) and 1 (J7), respectively.

This function corresponds loosely to equations 105-107, 111-116, 119-121, and 123-128 in
[Hunziker_et_al_2015], and equally loosely to the file kxwmod. c.

[Hunziker_et_al_2015] uses Bessel functions of orders 0, 1, and 2 (Jy, J1, J2). The implementations of
the Fast Hankel Transform and the Quadrature-with-Extrapolation in t ransform are set-up with Bessel

3.5. Code 37

http://software.seg.org/2015/0001
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.7.3

functions of order 0 and 1 only. This is achieved by applying the recurrence formula

JQ(kT‘) = %Jl(k’f‘) - Jo(k’l”) .

Note: PJO and PJOb could theoretically be added here into one, and then be transformed in one go.
However, PJ0b has to be multiplied by factAng later. This has to be done after the Hankel transform for
methods which make use of spline interpolation, in order to work for offsets that are not in line with each
other.

This function is called from one of the Hankel functions in t ransform. Consult the modelling routines
in model for a description of the input and output parameters.

If you are solely interested in the wavenumber-domain solution you can call this function directly. However,
you have to make sure all input arguments are correct, as no checks are carried out here.

empymod.kernel .angle_factor (angle, ab, msrc, mrec)
Return the angle-dependent factor.

The whole calculation in the wavenumber domain is only a function of the distance between the source and
the receiver, it is independent of the angel. The angle-dependency is this factor, which can be applied to the
corresponding parts in the wavenumber or in the frequency domain.

The angle_factor corresponds to the sine and cosine-functions in Eqs 105-107, 111-116, 119-121,
123-128.

This function is called from one of the Hankel functions in t ransform. Consult the modelling routines
in model for a description of the input and output parameters.

empymod.kernel . fullspace (off, angle, zsrc, zrec, etaH, etaV, zetaH, zetaV, ab, msrc, mrec)
Analytical full-space solutions in the frequency domain.

~ee ee éee Yem Sem
afsr F3ar 33 Tafr Tald

ing files Gin11.F90, Ginl2.F90, Ginl3.F90, Gin22.F90, Gin23.F90, Gin31.F90, Gin32.
F90, Gin33.F90, Gin41l.F90, Gin42.F90, Gin43.F90, Gin51.F90, Gin52.F90, Ginb53.
F90,Gin61.F90,and Gin62.F90.

This function corresponds to equations 45-50 in [Hunziker_et_al_2015], and loosely to the correspond-

This function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.

empymod.kernel .greenfct (zsrc, zrec, Isrc, lrec, depth, etaH, etaV, zetaH, zetaV, lambd, ab, xdirect,

msrc, mrec, use_ne_eval)
Calculate Green’s function for TM and TE.

Thi s G G5 s Garts Gy 5%
This function corresponds to equations 108—110, 117/118, 122; 89-94, A18-A23, B13-B15; 97-102
A26-A31, and B16-B18 in [Hunziker_et_al_2015], and loosely to the corresponding files Gamma .F 90,

Wprop.F90, Ptotalx.F90, Ptotalxm.F90, Ptotaly.F90, Ptotalym.F90, Ptotalz.F90,
and Ptotalzm.F90.

The Green’s functions are multiplied according to Eqs 105-107, 111-116, 119-121, 123-128; with the factors
inside the integrals.

This function is called from the function kernel .wavenumber.

empymod.kernel .reflections (depth, e_zH, Gam, Ilrec, Isrc, use_ne_eval)
Calculate Rp, Rm.

R RF

38 Chapter 3. License information

empymod Documentation, Release 1.7.3

This function corresponds to equations 64/65 and A-11/A-12 in [Hunziker_et_al_2015], and loosely to the
corresponding files Rmin.F90 and Rplus.F90.

This function is called from the function kernel.greenfct.

empymod.kernel . £ields (depth, Rp, Rm, Gam, lrec, Isrc, zsrc, ab, TM, use_ne_eval)
Calculate Pu+, Pu-, Pd+, Pd-.

u+t put pdt ut ut put put d+ + pdt pd+t
Ps ’Psdi7Ps 7Psd ;Ps—th 7Ps—1’Pn ;PS_H,PS 7Ps+17Pg
This function corresponds to equations 81/82, 95/96, 103/104, A-8/A-9, A-24/A-25, and A-32/A-33 in
[Hunziker_et_al_2015], and loosely to the corresponding files Pdownmin.F90, Pdownplus.F90,

Pupmin.F90, and Pdownmin.F90.
This function is called from the function kernel.greenfct.

empymod . kernel .halfspace (off, angle, zsrc, zrec, etaH, etaV, freqtime, ab, signal, solution="dhs’)
Return frequency- or time-space domain VTI half-space solution.

Calculates the frequency- or time-space domain electromagnetic response for a half-space below air using
the diffusive approximation, as given in [Slob_et_al_2010], where the electric source is located at [0, O,

zsrc], and the electric receiver at [xco, yco, zrec].

It can also be used to calculate the fullspace solution or the separate fields: direct field, reflected field, and
airwave; always using the diffusive approximation. See solut i on-parameter.

This function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and solution parameters.

3.5.3 transform - Hankel and Fourier Transforms

Methods to carry out the required Hankel transform from wavenumber to frequency domain and Fourier transform
from frequency to time domain.

The functions for the QWE and DLF Hankel and Fourier transforms are based on source files (specified in each
function) from the source code distributed with [Key_2012], which can be found at software.seg.org/2012/0003.
These functions are (c) 2012 by Kerry Key and the Society of Exploration Geophysicists, http://software.seg.org/
disclaimer.txt. Please read the NOTICE-file in the root directory for more information regarding the involved
licenses.

empymod.transform. £ht (zsrc, zrec, Isrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdirect,

fhtarg, use_ne_eval, msrc, mrec)
Hankel Transform using the Digital Linear Filter method.

The Digital Linear Filter method was introduced to geophysics by [Ghosh_1970], and made popular and
wide-spread by [Anderson_1975], [Anderson_1979], [Anderson_1982]. The DLF is sometimes referred to
as the Fast Hankel Transform FHT, from which this routine has its name.

This implementation of the DLF follows [Key_2012], equation 6. Without going into the mathematical
details (which can be found in any of the above papers) and following /Key_2012], the DLF method rewrites
the Hankel transform of the form

F) = [100 0nan

as

n

F(r) = Z f(bi/r)hi/r,
i=1
where h is the digital filter. The Filter abscissae b is given by
by = \ir = e, i=—l,—l+1,--,1,

with [= (n — 1)/2, and a is the spacing coefficient.

3.5. Code 39

http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.7.3

This function is loosely based on get_CSEMI1D_FD_FHT.m from the source code distributed with
[Key_2012].

The function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.
Returns fEM : array
Returns frequency-domain EM response.
kcount : int
Kernel count. For DLF, this is 1.
conv : bool
Only relevant for QWE/QUAD.

empymod.transform.hqgwe (zsrc, zrec, Isrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV, xdi-

rect, qgweargs, use_ne_eval, msrc, mrec)
Hankel Transform using Quadrature-With-Extrapolation.

Quadrature-With-Extrapolation was introduced to geophysics by [Key_2012]. It is one of many so-called
ISE methods to solve Hankel Transforms, where ISE stands for Integration, Summation, and Extrapolation.

Following [Key_2012], but without going into the mathematical details here, the QWE method rewrites the
Hankel transform of the form

F(r) = /0 T O O

as a quadrature sum which form is similar to the DLF (equation 15),

m

w3 flag/rywigleg) = 3 f (/1))

Jj=1

but with various bells and whistles applied (using the so-called Shanks transformation in the form
of a routine called e-algorithm (/Shanks_1955], [Wynn_1956]; implemented with algorithms from
[Trefethen_2000] and [Weniger_1989]).

This function is based on get_CSEMI1D_FD_QWE.m, gwe.m, and getBesselWeights.m from the
source code distributed with [Key_2012].

In the spline-version, hqwe checks how steep the decay of the wavenumber-domain result is, and calls
QUAD for the very steep interval, for which QWE is not suited.

The function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.
Returns fEM : array
Returns frequency-domain EM response.
kcount : int
Kernel count.
conv : bool
If true, QWE/QUAD converged. If not, <htarg> might have to be adjusted.

empymod.transform.hquad (zsrc, zrec, Isrc, lrec, off, angle, depth, ab, etaH, etaV, zetaH, zetaV,

xdirect, quadargs, use_ne_eval, msrc, mrec)
Hankel Transform using the QUADPACK library.

This routine uses the scipy.integrate.quad module, which in turn makes use of the Fortran library
QUADPACK (gagse).

It is massively (orders of magnitudes) slower than either fht or hgwe, and is mainly here for completeness
and comparison purposes. It always uses interpolation in the wavenumber domain, hence it generally will
not be as precise as the other methods. However, it might work in some areas where the others fail.

The function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.
Returns fEM : array
Returns frequency-domain EM response.
kcount : int

40

Chapter 3. License information

empymod Documentation, Release 1.7.3

Kernel count. For HQUAD, this is 1.
conv : bool
If true, QUAD converged. If not, <htarg> might have to be adjusted.

empymod.transform. ££ht (fEM, time, freq, ftarg)
Fourier Transform using the Digital Linear Filter method.

It follows the Filter methodology [Anderson_1975], using Cosine- and Sine-filters; see £ht for more infor-
mation.

The function is called from one of the modelling routines in model. Consult these modelling routines for
a description of the input and output parameters.

This function is based on get _CSEMI1D_TD_FHT .m from the source code distributed with [Key_2012].
Returns tEM : array
Returns time-domain EM response of £EM for given t ime.
conv : bool
Only relevant for QWE/QUAD.

empymod.transform. fqwe (fEM, time, freq, gweargs)
Fourier Transform using Quadrature-With-Extrapolation.

It follows the QWE methodology [Key_2012] for the Hankel transform, see hgwe for more information.

The function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.

This function is based on get _CSEM1D_TD_QWE . m from the source code distributed with [Key 2012].

fgwe checks how steep the decay of the frequency-domain result is, and calls QUAD for the very steep
interval, for which QWE is not suited.
Returns tEM : array
Returns time-domain EM response of £EM for given t ime.
conv : bool
If true, QWE/QUAD converged. If not, <ftarg> might have to be adjusted.

empymod.transform. ££tlog (fEM, time, freq, ftarg)
Fourier Transform using FFTLog.

FFTLog is the logarithmic analogue to the Fast Fourier Transform FFT. FFTLog was presented in Appendix
B of [Hamilton_2000] and published at <http://casa.colorado.edu/~ajsh/FFTLog>.

This function uses a simplified version of pyfftlog, which is a python-version of FFTLog. For more
details regarding py £ £t Log see <https://github.com/prisae/pyfttlog>.

Not the full flexibility of FFTLog is available here: Only the logarithmic FFT (fft1 in FFTLog), not the
Hankel transform (fht in FFTLog). Furthermore, the following parameters are fixed:

e kr =1 (initial value)

e kropt =1 (silently adjusts kr)

e dir =1 (forward)
Furthermore, g is restricted to -1 <= q <= 1.

The function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.
Returns tEM : array
Returns time-domain EM response of £EM for given t ime.
conv : bool
Only relevant for QWE/QUAD.

empymod.transform. ££t (fEM, time, freq, ftarg)
Fourier Transform using the Fast Fourier Transform.

The function is called from one of the modelling routines in mode 1. Consult these modelling routines for
a description of the input and output parameters.
Returns tEM : array
Returns time-domain EM response of £EM for given t ime.

3.5. Code VL]

http://casa.colorado.edu/~ajsh/FFTLog
https://github.com/prisae/pyfftlog

empymod Documentation, Release 1.7.3

conv : bool
Only relevant for QWE/QUAD.

empymod.transform.dl€f (signal, points, out_pts, filt, pts_per_dec, kind=None, factAng=None,
ab=None)
Digital Linear Filter method.
This is the kernel of the DLF method, used for the Hankel (fht) and the Fourier (f £ht) Transforms. See
fht for an extensive description.

For the Hankel transform, signal contains 3 complex wavenumber-domain signals: (PJO, PJ1, PJOb), as
returned from kernel.wavenumber. The Hankel DLF has two additional, optional parameters: factAng, as
returned from kernel.angle_factor, and ab. The PJO-kernel is the part of the wavenumber-domain calculation
which contains a zeroth-order Bessel function and does NOT depend on the angle between source and
receiver, only on offset. PJOb and PJ1 are the parts of the wavenumber-domain calculation which contain
a zeroth- and first-order Bessel function, respectively, and can depend on the angle between source and
receiver. PJO, PJ1, or PJOb can also be None, if they are not used.

For the Fourier transform, signal is a complex frequency-domain signal. The Fourier DLF requires one
additional parameter, kind, which will be ‘cos’ or ‘sin’.

empymod.transform.qwe (rtol, atol, maxint, inp, intervals, lambd=None, off=None, factAng=None)
Quadrature-With-Extrapolation.

This is the kernel of the QWE method, used for the Hankel (hgwe) and the Fourier (fgwe) Transforms.
See hgwe for an extensive description.

This function is based on gwe . m from the source code distributed with [Key_2012].

empymod.transform.get_spline_values (filt, inp, nr_per_dec=None)
Return required calculation points.

empymod.transform. £fhti (rmin, rmax, n, q, mu)
Return parameters required for FFTLog.

3.5.4 filters — Digital Linear Filters

Filters for the Digital Linear Filter (DLF) method for the Hankel [Ghosh_1970]) and the Fourier
([Anderson_1975]) transforms.

To calculate the d1f.factor I used

np.around (np.average (dlf.base[1:]/dlf.base[:-1]), 15)

The filters kong_61_2007 and kong_241_2007 from [Kong 2007], and key_101_2009,
key_201_2009, key_401_2009, key_81_CosSin_2009, key_241_CosSin_2009, and
key_601_CosSin_2009 from [Key_2009] are taken from DIPOLEID, [Key_2009], which can be down-
loaded at http://marineemlab.ucsd.edu/Projects/Occam/IDCSEM (1DCSEM). DIPOLEID is distributed under
the license GNU GPL version 3 or later. Kerry Key gave his written permission to re-distribute the filters under
the Apache License, Version 2.0 (email from Kerry Key to Dieter Werthmiiller, 21 November 2016).

The filters anderson_801_1982 from [Anderson_1982] and key_51_2012, key_101_2012,
key_201_2012,key_101_CosSin_2012,and key_201_CosSin_2012, all from [Key_2012], are taken
from the software distributed with [Key_2012] and available at http://software.seg.org/2012/0003 (SEG-2012-
003). These filters are distributed under the SEG license.

The filter wer_201_2018 was designed with the add-on fdesign, see https://github.com/empymod/
article-fdesign.

class empymod.filters.DigitalFilter (name, savename=None)
Simple Class for Digital Linear Filters.

fromfile (path="filters’)
Load filter values from ascii-files.

42 Chapter 3. License information

http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://software.seg.org/2012/0003
http://software.seg.org/2012/0003
http://software.seg.org/2012/0003
https://github.com/empymod/article-fdesign
https://github.com/empymod/article-fdesign

empymod Documentation, Release 1.7.3

Load filter base and filter coefficients from ascii files in the directory path; path can be a relative or
absolute path.

Examples

>>> import empymod

>>> # Create an empty filter;

>>> # Name has to be the base of the text files

>>> filt = empymod.filters.DigitalFilter('my-filter')
>>> # Load the ascii-files

>>> filt.fromfile ()

>>> # This will load the following three files:

>>> # ./filters/my-filter_base.txt
>>> # ./filters/my-filter. j0.txt
>>> # ./filters/my—filter_jl.txt

>>> # and store them in filt.base, filt.jO, and filt.jl.

tofile (path="filters’)
Save filter values to ascii-files.

Store the filter base and the filter coefficients in separate files in the directory path; path can be a
relative or absolute path.

Examples

>>> import empymod

>>> # Load a filter

>>> filt = empymod.filters.wer_201_2018()

>>> # Save it to pure ascii-files

>>> filt.tofile ()

>>> # This will save the following three files:

>>> # ./filters/wer_201_2018 base.txt
>>> # ./filters/wer_201_2018_7j0.txt
>>> # ./filters/wer_201_2018 jl.txt

empymod.filters.anderson_801_1982 ()
Anderson 801 pt Hankel filter, as published in [Anderson_1982].

Taken from file wa801Hankel . txt provided with SEG-2012-003.
License: http://software.seg.org/disclaimer.txt.

empymod.filters.key 101_2009 ()
Key 101 pt Hankel filter, as published in [Key _2009].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.key 101_2012 ()
Key 101 pt Hankel filter, as published in [Key 2012].

Taken from file kk101Hankel . txt provided with SEG-2012-003.
License: http://software.seg.org/disclaimer.txt.

empymod.filters.key 101_CosSin_2012()
Key 101 pt CosSin filter, as published in [Key_2012].

Taken from file kk101CosSin. txt provided with SEG-2012-003.

License: http://software.seg.org/disclaimer.txt.

3.5. Code 43

http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt

empymod Documentation, Release 1.7.3

empymod.filters.key_ 201_2009()
Key 201 pt Hankel filter, as published in /Key 2009].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.key_ 201_2012 ()
Key 201 pt Hankel filter, as published in /[Key 2012].

Taken from file kk201Hankel . t xt provided with SEG-2012-003.
License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_201_CosSin_2012 ()
Key 201 pt CosSin filter, as published in [Key_2012].

Taken from file kk201CosSin. txt provided with SEG-2012-003.
License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_241_CosSin_20009 ()
Key 241 pt CosSin filter, as published in [Key_2009].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.key_401_2009()
Key 401 pt Hankel filter, as published in [Key_2009].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.key_ 51_2012()
Key 51 pt Hankel filter, as published in [Key 2012].

Taken from file kk51Hankel . txt provided with SEG-2012-003.
License: http://software.seg.org/disclaimer.txt.

empymod.filters.key_601_CosSin_20009 ()
Key 601 pt CosSin filter, as published in [Key_2009].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.key_81_CosSin_20009 ()
Key 81 pt CosSin filter, as published in [Key_2009].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.kong_241_2007 ()
Kong 241 pt Hankel filter, as published in [Kong_2007].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.kong_61_2007 ()
Kong 61 pt Hankel filter, as published in [Kong_2007].

Taken from file FilterModules. £90 provided with IDCSEM.
License: Apache License, Version 2.0,.

empymod.filters.wer_201_2018()
Werthmiiller 201 pt Hankel filter, 2018.

Designed with the empymod add-on fdesign, see https://github.com/empymod/article-fdesign.

44 Chapter 3. License information

http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://software.seg.org/2012/0003
http://software.seg.org/disclaimer.txt
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/empymod/article-fdesign

empymod Documentation, Release 1.7.3

License: Apache License, Version 2.0,.

3.5.5 utils — Utilites

Utilities for model such as checking input parameters.
This module consists of four groups of functions:

0. General settings

1. Class EMArray

2. Input parameter checks for modelling

3. Internal utilities

class empymod.utils.EMArray
Subclassing an ndarray: add amplitude <amp> and phase <pha>.
Parameters realpart : array
1. Real part of input, if input is real or complex.

2. Imaginary part of input, if input is pure imaginary.
3. Complex input.

In cases 2 and 3, imagpart must be None.
imagpart: array, optional
Imaginary part of input. Defaults to None.

Examples

>>> import numpy as np

>>> from empymod.utils import EMArray

>>> emvalues = EMArray(np.array([1l,2,3]1), np.array([1l, 0, -11))
>>> print ('Amplitude : ', emvalues.amp)

Amplitude : [1.41421356 2. 3.16227766]

>>> print ('Phase : ', emvalues.pha)

Phase : [45. 0. -18.43494882]

Attributes

amp | (ndarray) Amplitude of the input data.
pha | (ndarray) Phase of the input data, in degrees, lag-defined (increasing with increasing offset.) To
get lead-defined phases, multiply imagpart by -1 before passing through this function.

empymod.utils.check_time_only (time, signal, verb)
Check time and signal parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters time : array_like
Times t (s).
signal : {None, 0, 1, -1}
Source signal:

* None: Frequency-domain response
* -1 : Switch-off time-domain response

* 0 : Impulse time-domain response

3.5. Code 45

http://www.apache.org/licenses/LICENSE-2.0

empymod Documentation, Release 1.7.3

* +1 : Switch-on time-domain response
verb: {0, 1,2, 3,4}
Level of verbosity.
Returns time : float
Time, checked for size and assured min_time.

empymod.utils.check_time (time, signal, ft, ftarg, verb)
Check time domain specific input parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters time : array_like
Times t (s).
signal : {None, 0, 1, -1}
Source signal:

* None: Frequency-domain response
* -1 : Switch-off time-domain response
* 0 : Impulse time-domain response

* +1 : Switch-on time-domain response
ft: {‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}
Flag for Fourier transform.
ftarg : str or filter from empymod.filters or array_like,
Only used if signal !=None. Depends on the value for ft:
verb: {0, 1,2, 3,4}
Level of verbosity.
Returns time : float
Time, checked for size and assured min_time.
freq : float
Frequencies required for given times and ft-settings.
ft, ftarg
Checked if valid and set to defaults if not provided, checked with signal.

empymod.utils.check_model (depth, res, aniso, epermH, epermV, mpermH, mpermV, xdirect,

verb)
Check the model: depth and corresponding layer parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters depth : list

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

res : array_like
Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH, epermV : array_like
Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res.

mpermH, mpermV : array_like
Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res.

xdirect : bool, optional
If True and source and receiver are in the same layer, the direct field is cal-
culated analytically in the frequency domain, if False it is calculated in the
wavenumber domain.

verb : {0, 1,2, 3,4}
Level of verbosity.

Returns depth : array

Depths of layer interfaces, adds -infty at beginning if not present.

46 Chapter 3. License information

empymod Documentation, Release 1.7.3

res : array
As input, checked for size.
aniso : array
As input, checked for size. If None, defaults to an array of ones.
epermH, epermV : array_like
As input, checked for size. If None, defaults to an array of ones.
mpermH, mpermV : array_like
As input, checked for size. If None, defaults to an array of ones.
isfullspace : bool
If True, the model is a fullspace (res, aniso, epermH, epermV, mpermM, and
mpermV are in all layers the same).

empymod.utils.check_frequency (freq, res, aniso, epermH, epermV, mpermH, mpermV, verb)
Calculate frequency-dependent parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters freq : array_like

Frequencies f (Hz).

res : array_like
Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

aniso : array_like
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res.

epermH, epermV : array_like
Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-);
#epermH = #epermV = #res.

mpermH, mpermV : array_like
Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-);
#mpermH = #mpermV = #res.

verb: {0, 1,2, 3,4}
Level of verbosity.

Returns freq : float

Frequency, checked for size and assured min_freq.

etaH, etaV : array
Parameters etaH/etaV, same size as provided resistivity.

zetaH, zetaV : array
Parameters zetaH/zetaV, same size as provided resistivity.

empymod.utils.check_hankel (ht, htarg, verb)
Check Hankel transform parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters ht : {‘tht’, ‘qwe’, ‘quad’}
Flag to choose the Hankel transform.
htarg : str or filter from empymod.filters or array_like,
Depends on the value for ht.
verb: {0, 1,2, 3,4}
Level of verbosity.
Returns ht, htarg
Checked if valid and set to defaults if not provided.

empymod.utils.check_opt (opt, loop, ht, htarg, verb)
Check optimization parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters opt : {None, ‘parallel’}
Optimization flag; use numexpr or not.
loop : {None, ‘freq’, ‘off’}
Loop flag.

3.5. Code 47

empymod Documentation, Release 1.7.3

ht : str

Flag to choose the Hankel transform.
htarg : array_like,

Depends on the value for ht.
verb: {0, 1,2, 3,4}

Level of verbosity.

Returns use_ne_eval : bool

Boolean if to use numexpr.
loop_freq : bool

Boolean if to loop over frequencies.
loop_off : bool

Boolean if to loop over offsets.

empymod.utils.check_dipole (inp, name, verb)
Check dipole parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters inp : list of floats or arrays
Pole coordinates (m): [pole-x, pole-y, pole-z].
name : str, { ‘src’, ‘rec’}
Pole-type.
verb: {0, 1,2, 3,4}
Level of verbosity.
Returns inp : list
List of pole coordinates [X, y, z].
ninp : int
Number of inp-elements

empymod.utils.check_bipole (inp, name)
Check di-/bipole parameters.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters inp : list of floats or arrays
Coordinates of inp (m): [dipole-x, dipole-y, dipole-z, azimuth, dip] or.
[bipole-x0, bipole-x1, bipole-y0, bipole-y1, bipole-z0, bipole-z1].
name : str, { ‘src’, ‘rec’}
Pole-type.
Returns inp : list
As input, checked for type and length.
ninp : int
Number of inp.
ninpz : int
Number of inp depths (ninpz is either 1 or ninp).
isdipole : bool
True if inp is a dipole.

empymod.utils.check_ab (ab, verb)
Check source-receiver configuration.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters ab : int
Source-receiver configuration.
verb : {0, 1, 2,3, 4}
Level of verbosity.
Returns ab_calc : int
Adjusted source-receiver configuration using reciprocity.
msrc, mrec : bool
If True, src/rec is magnetic; if False, src/rec is electric.

48 Chapter 3. License information

empymod Documentation, Release 1.7.3

empymod.utils.check_solution (solution, signal, ab, msrc, mrec)
Check required solution with parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters solution : str
String to define analytical solution.
signal : {None, 0, 1, -1}
Source signal:

* None: Frequency-domain response
* -1 : Switch-off time-domain response
* 0 : Impulse time-domain response

* +1 : Switch-on time-domain response
msrc, mrec : bool
True if src/rec is magnetic, else False.

empymod.utils.get_abs (msrc, mrec, srcazm, srcdip, recazm, recdip, verb)
Get required ab’s for given angles.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters msrc, mrec : bool
True if src/rec is magnetic, else False.
srcazm, recazm : float
Horizontal source/receiver angle (azimuth).
srcdip, recdip : float
Vertical source/receiver angle (dip).
verb : {0, 1,2, 3,4}
Level of verbosity.
Returns ab_calc : array of int
ab’s to calculate for this bipole.

empymod.utils.get_geo_fact (ab, srcazm, srcdip, recazm, recdip, msrc, mrec)
Get required geometrical scaling factor for given angles.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters ab : int
Source-receiver configuration.
srcazm, recazm : float
Horizontal source/receiver angle.
sredip, recdip : float
Vertical source/receiver angle.
Returns fact : float
Geometrical scaling factor.

empymod.utils.get_azm dip (inp, iz, ninpz, intpts, isdipole, strength, name, verb)
Get angles, interpolation weights and normalization weights.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters inp : list of floats or arrays
Input coordinates (m):

* [x0, x1, y0, y1, z0, z1] (bipole of finite length)

* [X, Y, z, azimuth, dip] (dipole, infinitesimal small)
iz : int
Index of current di-/bipole depth (-).
ninpz : int
Total number of di-/bipole depths (ninpz = 1 or npinz = nsrc) (-).

3.5. Code 49

empymod Documentation, Release 1.7.3

intpts : int

Number of integration points for bipole (-).
isdipole : bool

Boolean if inp is a dipole.
strength : float, optional

Source strength (A):

* If O, output is normalized to source and receiver of 1 m length,
and source strength of 1 A.

 If != 0, output is returned for given source and receiver length,
and source strength.
name : str, {‘src’, ‘rec’}
Pole-type.
verb : {0, 1,2, 3,4}
Level of verbosity.
Returns tout : list of floats or arrays
Dipole coordinates x, y, and z (m).
azm : float or array of floats
Horizontal angle (azimuth).
dip : float or array of floats
Vertical angle (dip).
g_w : float or array of floats
Factors from Gaussian interpolation.
intpts : int
As input, checked.
inp_w : float or array of floats
Factors from source/receiver length and source strength.

empymod.utils.get_off ang (src, rec, nsrc, nrec, verb)
Get depths, offsets, angles, hence spatial input parameters.

This check-function is called from one of the modelling routines in mode 1. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters src, rec : list of floats or arrays
Source/receiver dipole coordinates X, y, and z (m).
nsrc, nrec : int
Number of sources/receivers (-).
verb: {0, 1,2, 3,4}
Level of verbosity.
Returns off : array of floats
Offsets
angle : array of floats
Angles

empymod.utils.get_layer_nr (inp, depth)
Get number of layer in which inp resides.

Note: If zinp is on a layer interface, the layer above the interface is chosen.

This check-function is called from one of the modelling routines in model. Consult these modelling rou-
tines for a detailed description of the input parameters.
Parameters inp : list of floats or arrays
Dipole coordinates (m)
depth : array
Depths of layer interfaces.
Returns linp : int or array_like of int
Layer number(s) in which inp resides (plural only if bipole).
zinp : float or array
inp[2] (depths).

empymod.utils.printstart£finish (verb, inp=None, kcount=None)

50 Chapter 3. License information

empymod Documentation, Release 1.7.3

Print start and finish with time measure and kernel count.

empymod.utils.conv_warning (conv, targ, name, verb)
Print error if QWE/QUAD did not converge at least once.

empymod.utils.set_minimum (min_freq=None, min_time=None, min_off=None, min_res=None,
min_angle=None)
Set minimum values of parameters.

The given parameters are set to its minimum value if they are smaller.
Parameters min_freq : float, optional

Minimum frequency [Hz] (default 1e-20 Hz).

min_time : float, optional
Minimum time [s] (default 1e-20 s).

min_off : float, optional
Minimum offset [m] (default 1e-3 m). Also used to round src- & rec-
coordinates.

min_res : float, optional
Minimum horizontal and vertical resistivity [Ohm.m] (default 1e-20).

min_angle : float, optional
Minimum angle [-] (default 1e-10).

empymod.utils.get_minimum ()
Return the current minimum values.
Returns min_vals : dict
Dictionary of current minimum values with keys

* min_freq : float
e min_time : float
e min_off : float
e min_res : float
* min_angle : float
For a full description of these options, see set_minimum.

empymod.utils.spline_backwards_hankel (ht, htarg, opt)
Check opt if deprecated ‘spline’ is used.

Returns corrected htarg, opt.

3.6 Add-ons

3.6.1 f£design — Digital Linear Filter (DLF) design

The add-on fdesign can be used to design digital linear filters for the Hankel or Fourier transform, or for any linear
transform (/Ghosh_1970]). For this included or provided theoretical transform pairs can be used. Alternatively,
one can use the EM modeller empymod to use the responses to an arbitrary 1D model as numerical transform pair.

More information can be found in the following places:
* The article about fdesign is in the repo https://github.com/empymod/article-fdesign

e Example notebooks to design a filter can be found in the repo https://github.com/empymod/
example-notebooks

This filter designing tool uses the direct matrix inversion method as described in [Kong_2007] and is based on
scripts by [Key 2012]. The whole project of fdesign started with the Matlab scripts from Kerry Key, which
he used to design his filters for [Key_2009], [Key_2012]. Fruitful discussions with Evert Slob and Kerry Key
improved the add-on substantially.

3.6. Add-ons 51

https://github.com/empymod/article-fdesign
https://github.com/empymod/example-notebooks
https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.7.3

Note that the use of empymod to create numerical transform pairs is, as of now, only implemented for the Hankel
transform.

Implemented analytical transform pairs

The following tables list the transform pairs which are implemented by default. Any other transform pair can be
provided as input. A transform pair is defined in the following way:

from empymod.scripts import fdesign

def my_tp_pair(var):
"'"'"My transform pair.'''

def lhs(1):
return func(l, var)

def rhs(r):
return func(r, var)

return fdesign.Ghosh (name, lhs, rhs)

Here, name must be one of j0, j1, sin, or cos, depending what type of transform pair it is. Additional variables
are provided with var. The evaluation points of the 1hs are denoted by 1, and the evaluation points of the rhs
are denoted as r. As an example here the implemented transform pair j0_1

def j0_1(a=1):
""'Hankel transform pair J0_1 ([Anderson_1975]_)."""

def lhs(1l):
return lx np.exp(-axlxx2)

def rhs(r):
return np.exp (-r**2/ (4%a))/ (2+xa)

return Ghosh('j0', lhs, rhs)

Implemented Hankel transforms

* j0_1 [Anderson_1975]

oo ()
/ Lexp (—al?) Jo(Ir)dl = — 22
0

2a

e 30_2 [Anderson_1975]
& 1
exp (—al) Jo(lr)dl = ——
/0 p() O() \/W
* j0_3 [Guptasarma_and_Singh_1997]
& a
‘/O lexp (_al) Jo(lr)dl = m
* 30_4 [Chave_and_Cox_1982]

> _exp(—R)
/0 Bexp (=Bzy) Jo(lr)dl = — 5

52 Chapter 3. License information

empymod Documentation, Release 1.7.3

* 30_5 [Chave_and_Cox_1982]

(vR+1)

oo Zy
/o lexp (—Bzy) Jo(lr)dl = B exp (—vR)

e 31_1 [Anderson_1975]

e} r 7“2
/0 I? exp (—al®) Jy(Ir)dl = 12 P (_4a>
* J1_2 [Anderson_1975]

vaz+r2—a

—al) Ji(Ir)dl =
/0 exp (—al) J1(Ir) e

* 31_3 [Anderson_1975]
o0 r
A leXp (—Cll) Jl(l’l")dl = m
e 31_4 [Chave_and_Cox_1982]

oo 2 r(vyR+1
L exp (~z0) iy = "D

3 exp (—7R)

* j1_5 [Chave_and_Cox_1982]

rzy(V2PR? + 3yR + 3)

/ P exp (—Bz) (i)l = p exp (—1R)
Where
a>0,r>0
2y = |2rec — Zsrc|
R=\r+z
v =V2jmuof/p
B=ViE+a?

Implemented Fourier transforms

e sin_1 [Anderson_1975]

o] 2
272\ - \/7?7' T
/0 Lexp (—a®l?) sin(lr)dl = 15 &XP <_4a2>

e sin_2 [Anderson_1975]

/0 exp (—al) sin(lr)dl = a?L—f—rQ
e sin_3 [Anderson_1975]

<1
/0 P sin(lr)dl = g exp (—ar)

3.6. Add-ons

53

empymod Documentation, Release 1.7.3

e cos_1 [Anderson_1975]

> 2
/0 exp (—a®1?) cos(lr)dl = \2/75 exp <_4:L2)

e cos_2 [Anderson_1975]

a

/0 exp (—al) cos(lr)dl = P

e cos_3 [Anderson_1975]

e 1
/0 P cos(lr)dl = 2% exp (—ar)

empymod.scripts.fdesign.design (n, spacing, shift, fl, fC=False, r=None, r_def=(1, 1,
2), reim=None, cvar="amp’, error=0.01, name=None,
full_output=False, finish=False, save=True, path="filters’,
verb=2, plot=1)

Digital linear filter (DLF) design

This routine can be used to design digital linear filters for the Hankel or Fourier transform, or for any
linear transform (/Ghosh_1970]). For this included or provided theoretical transform pairs can be used.
Alternatively, one can use the EM modeller empymod to use the responses to an arbitrary 1D model as
numerical transform pair.

This filter designing tool uses the direct matrix inversion method as described in [Kong_2007] and is
based on scripts by [Key 2012]. The tool is an add-on to the electromagnetic modeller empymod
[Werthmuller_2017]. Fruitful discussions with Evert Slob and Kerry Key improved the add-on substan-
tially.

Example notebooks of its usage can be found in the repo github.com/empymod/example-notebooks.
Parameters n : int

Filter length.

spacing: float or tuple (start, stop, num)
Spacing between filter points. If tuple, it corresponds to the input for
np.linspace with endpoint=True.

shift: float or tuple (start, stop, num)
Shift of base from zero. If tuple, it corresponds to the input for np.linspace
with endpoint=True.

fL, £fC : transform pairs
Theoretical or numerical transform pair(s) for the inversion (I) and for the
check of goodness (fC). fC is optional. If not provided, fI is used for both fI
and fC.

r : array, optional
Right-hand side evaluation points for the check of goodness (fC). Defaults
to r = np.logspace(0, 5, 1000), which are a lot of evaluation points, and
depending on the transform pair way too long r’s.

r_def : tuple (add_left, add_right, factor), optional
Definition of the right-hand side evaluation points r of the inversion. r is
derived from the base values, default is (1, 1, 2).

* rmin = log10(1/max(base)) - add_left
e rmax = log10(1/min(base)) + add_right

* r = logspace(rmin, rmax, factor*n)
reim : np.real or np.imag, optional
Which part of complex transform pairs is used for the inversion. Defaults to
np.real.
cvar : string { ‘amp’, ‘r’}, optional

54 Chapter 3. License information

https://github.com/empymod/example-notebooks

empymod Documentation, Release 1.7.3

If ‘amp’, the inversion minimizes the amplitude. If ‘r’, the inversion maxi-
mizes the right-hand side evaluation point r. Defaults is ‘amp’.

error : float, optional
Up to which relative error the transformation is considered good in the eval-
uation of the goodness. Default is 0.01 (1 %).

name : str, optional
Name of the filter. Defaults to dIf_+str(n).

full_output : bool, optional
If True, returns best filter and output from scipy.optimize.brute; else only
filter. Default is False.

finish : None, True, or callable, optional
If callable, it is passed through to scipy.optimize.brute: minimization func-
tion to find minimize best result from brute-force approach. Default is None.
You can simply provide True in order to use scipy.optimize.fmin_powell().
Set this to None if you are only interested in the actually provided
spacing/shift-values.

save : bool, optional
If True, best filter is saved to plain text files in ./filters/. Can be loaded with
fdesign.load_filter(name). If full, the inversion output is stored too. You
can add ‘.gz’ to name, which will then save the full inversion output in a
compressed file instead of plain text.

path : string, optional
Absolute or relative path where output will be saved if save=True. Default
is “filters’.

verb : {0, 1, 2}, optional
Level of verbosity, default is 2:

* (: Print nothing.
* 1: Print warnings.

* 2: Print additional time, progress, and result
plot : {0, 1, 2, 3}, optional
Level of plot-verbosity, default is 1:

* (: Plot nothing.
¢ 1: Plot brute-force result
* 2: Plot additional theoretical transform pairs, and best inv.

 3: Plot additional inversion result (can result in lots of plots
depending on spacing and shift) If you are using a notebook,
use %matplotlib notebook to have all inversion results ap-
pear in the same plot.
Returns filter : empymod.filter.DigitalFilter instance
Best filter for the input parameters.
full : tuple
Output from scipy.optimize.brute with full_output=True. (Returned when
full_output is True.)

empymod.scripts.fdesign.save_£filter (name, filt, full=None, path="filters’)
Save DLF-filter and inversion output to plain text files.

empymod.scripts.fdesign.load_f£filter (name, full=False, path="filters’)
Load saved DLF-filter and inversion output from text files.

empymod.scripts.fdesign.plot_result (filt, full, prntres=True)
QC the inversion result.
Parameters - filt, full as returned from fdesign.design with full_output=True

- If protres is True, it calls fdesign.print_result as well.

3.6. Add-ons

55

empymod Documentation, Release 1.7.3

empymod.scripts.fdesign.print_result (filt, full=None)
Print best filter information.
Parameters - filt, full as returned from fdesign.design with full_output=True

class empymod.scripts.fdesign.Ghosh (name, lhs, rhs)
Simple Class for Theoretical Transform Pairs.

Named after D. P. Ghosh, honouring his 1970 Ph.D. thesis with which he introduced the digital filter method
to geophysics (/Ghosh_1970]).

empymod.scripts.fdesign.jo_1 (a=1)
Hankel transform pair JO_1 ([Anderson_1975]).

empymod.scripts.fdesign.j0_2 (a=1)
Hankel transform pair JO_2 ([Anderson_1975]).

empymod.scripts.fdesign.jo_3 (a=1)
Hankel transform pair JO_3 (/ Guptasarma_and_Singh_1997]).

empymod.scripts.fdesign.jo0_4 (f=1, rho=0.3, z=50)
Hankel transform pair JO_4 (/Chave_and_Cox_1982]).
Parameters f: float

Frequency (Hz)

rho : float
Resistivity (Ohm.m)

z : float
Vertical distance between source and receiver (m)

empymod.scripts.fdesign.jo_5 (f=1, rho=0.3, z=50)
Hankel transform pair JO_5 (/Chave_and_Cox_1982]).
Parameters f: float

Frequency (Hz)

rho : float
Resistivity (Ohm.m)

z : float
Vertical distance between source and receiver (m)

empymod.scripts.fdesign.jl_1 (a=1)
Hankel transform pair J1_1 ([Anderson_1975]).

empymod.scripts.fdesign.jl_2 (a=1)
Hankel transform pair J1_2 ([Anderson_1975]).

empymod.scripts.fdesign.jl_3 (a=1)
Hankel transform pair J1_3 ([Anderson_1975]).

empymod.scripts.fdesign.jl_4 (f=1, rho=0.3, z=50)
Hankel transform pair J1_4 ([Chave_and_Cox_1982]).
Parameters f: float

Frequency (Hz)

rho : float
Resistivity (Ohm.m)

z : float
Vertical distance between source and receiver (m)

empymod.scripts.fdesign.j1_5 (f=1, rho=0.3, z=50)
Hankel transform pair J1_5 (/Chave_and_Cox_1982]).
Parameters f: float

Frequency (Hz)

rho : float
Resistivity (Ohm.m)

z : float
Vertical distance between source and receiver (m)

56 Chapter 3. License information

empymod Documentation, Release 1.7.3

empymod.scripts.fdesign.sin_1 (a=1)
Fourier sine transform pair sin_1 ([Anderson_1975]).

empymod.scripts.fdesign.sin_2 (a=I)
Fourier sine transform pair sin_2 (/Anderson_1975]).

empymod.scripts.fdesign.sin_3 (a=1)
Fourier sine transform pair sin_3 ([Anderson_1975]).

empymod.scripts.fdesign.cos_1 (a=1)
Fourier cosine transform pair cos_1 ([Anderson_1975]).

empymod.scripts.fdesign.cos_2 (a=1)
Fourier cosine transform pair cos_2 ([Anderson_1975]).

empymod.scripts.fdesign.cos_3 (a=1)
Fourier cosine transform pair cos_3 ([Anderson_1975]).

empymod.scripts.fdesign.empy_hankel (ftype, zsrc, zrec, res, freqtime, depth=[],
aniso=None, epermH=None, epermV=None,
mpermH=None, mpermV=None, htarg=None,

verblhs=0, verbrhs=0)
Numerical transform pair with empymod.

All parameters except ftype, verblhs, and verbrhs correspond to the input parameters to empymod .
dipole. See there for more information.

Note that if depth=[], the analytical full-space solutions will be used (much faster).
Parameters ftype : str or list of strings
Either of: {‘j0°, 517, j2’, [0’, j1’]}
* ‘0’: Analyze JO-term with ab=11, angle=45°
e j1’: Analyze J1-term with ab=31, angle=0°
* ‘j2’: Analyze JO- and J1-terms jointly with ab=12, angle=45°

¢ [4j0’, ¢j1°]: Same as calling empy_hankel twice, once with ‘j0’ and
one with ‘j1’; can be provided like this to fdesign.design.
verblhs, verbrhs: int
verb-values provided to empymod for lhs and rhs.
Note that ftype=’j2’ only works for fC, not for fI.

3.6.2 tmtemod — Calculate up- and down-going TM and TE modes

This add-on for empymod adjusts [Hunziker_et_al_2015] for TM/TE-split. The development was initiated by the

development of https://github.com/empymod/csem-ziolkowski-and-slob (/Ziolkowski_and_Slob_2018]).

This is a stripped-down version of empymod with a lot of simplifications but an important addition. The modeller
empymod returns the total field, hence not distinguishing between TM and TE mode, and even less between up-
and down-going fields. The reason behind this is simple: The derivation of [Hunziker_et_al_2015], on which
empymod is based, returns the total field. In this derivation each mode (TM and TE) contains non-physical
contributions. The non-physical contributions have opposite signs in TM and TE, so they cancel each other out
in the total field. However, in order to obtain the correct TM and TE contributions one has to remove these
non-physical parts.

This is what this routine does, but only for an x-directed electric source with an x-directed electric receiver, and
in the frequency domain (src and rec in same layer). This version of dipole returns the signal separated into
TM++, TM+-, TM-+, TM—, TE++, TE+-, TE-+, and TE- as well as the direct field TM and TE contributions.
The first superscript denotes the direction in which the field diffuses towards the receiver and the second super-
script denotes the direction in which the field diffuses away from the source. For both the plus-sign indicates the
field diffuses in the downward direction and the minus-sign indicates the field diffuses in the upward direction.
It uses empymod wherever possible. See the corresponding functions in empymod for more explanation and
documentation regarding input parameters. There are important limitations:

3.6. Add-ons 57

https://github.com/empymod/csem-ziolkowski-and-slob

empymod Documentation, Release 1.7.3

e ab == 11 [=> x-directed el. source & el. receivers]

* signal == None [=> only frequency domain]

e xdirect == False [=> direct field calc. in wavenr-domain]
¢ ht == ‘tht’

* htarg == ‘key_201_2012’

» Options ft, ftarg, opt, and 1loop are not available.

e lsrc == lrec [=> src & rec are assumed in same layer!]

* Model must have more than 1 layer

* Electric permittivity and magnetic permeability are isotropic.

* Only one frequency at once.

Theory

The derivation of [Hunziker_et_al_2015], on which empymod is based, returns the total field. Internally it also
calculates TM and TE modes, and sums these up. However, the separation into TM and TE mode introduces a
singularity at £ = 0. It has no contribution in the space-frequency domain to the total fields, but it introduces
non-physical events in each mode with opposite sign (so they cancel each other out in the total field). In order to

obtain the correct TM and TE contributions one has to remove these non-physical parts.

To remove the non-physical part we use the file tmtemod. py in this directory. This routine is basically a heavily
simplified version of empymod with the following limitations outlined above.

So tmtemod. py returns the signal separated into TM++, TM+-, TM-+, TM—, TE++, TE+-, TE-+, and TE- as
well as the direct field TM and TE contributions. The first superscript denotes the direction in which the field
diffuses towards the receiver and the second superscript denotes the direction in which the field diffuses away
from the source. For both the plus-sign indicates the field diffuses in the downward direction and the minus-
sign indicates the field diffuses in the upward direction. The routine uses empymod wherever possible, see the
corresponding functions in empymod for more explanation and documentation regarding input parameters.

Please note that the notation in [Hunziker_et_al_2015] differs from the notation in [Ziolkowski_and_Slob_2018].
I specify therefore always, which notification applies, either Hunl5 or Ziol8.

We start with equation (105) in Hunl5:

A 1>~ (Tsgiis GGt
Ge‘e ’ Gee i) 4 i / s zz;8 J d
J,ac(mvm aw) zx; s(7w) + ST —o s Fs O(HT)H K

cos(2¢) /OO Loy ngiez s
- : J. dk.
ey - ” + T 2(kr)kdkK

Ignoring the incident field, and using J; = %Jl — Jp to avoid Jy-integrals, we get

. 1 [~ (Tegim Cslldeg
Gee /’ _ = / ;S 2z;8 T d
o (x, 2, w) g (0 T o(kr)kdk

2 > FSNtm's S~ii‘s
+COS((b)/ (Ihh; + Cg, ’)JO(KT)KdK
K

8 =0 Ms Fs
cos(2¢) /°° Uogins | Cs9%%s
— ’ J dk.
47TT r=0 s * Fs 1(HT) "

From this the TM- and TE-parts follow as

TE = &8 2¢ -1 / ngiez s 7 COS ngiez s g

)Iﬁ:)d’iv

58 Chapter 3. License information

empymod Documentation, Release 1.7.3

™ =

s(2¢) +1 [Tsgi, 20) [Tsgihs
cos(2¢) + / Ihh:s Jo(kr)s drs — cos(2¢) / Inhse
8 K k=0 Ns

J dk.
T Tnr 1(kr) dr
Equations (108) and (109) in Hun15 yield the required parameters g;’;;s and !722;5»

Ghits = PLTW + PWL,

e = PLTWI 4 PIWY

The parameters P+ and P?* are given in equations (81) and (82), P** and P%* in equations (A-8) and (A-9);
W and W¢ in equation (74) in Hun15. This yields

Rf - _ -
gi‘"z;s =]\7; {exp[-Ts(zs — 2+ d")] + R, exp[-Ts(zs — 2+ ds +d7)]}
Ry F SN 3 +
+M {exp[-Ts(z — zs-1 + d7)] + RF exp[-Ts(2 — zs-1 +ds + dT)]},

RY
M,

{exp[ff‘s@zs — 2z =2+ R, exp[-Ts(2' — 2 + 2ds)]}

—&-%9 {exp[—fs(z + 2 —22,1)] + R exp[-T4(z — 2/ + 2d5)]} ,

where d* is taken from the text below equation (67). There are four terms in the right-hand side, two in the first
line and two in the second line. The first term in the first line is the integrand of TE+-, the second term in the first
line corresponds to TE++, the first term in the second line is TE-+, and the second term in the second line is TE—.

If we look at TE+-, we have
R _
gie;;rsi = ﬁss exp[_FS(QZs -z Z/)] 9
and therefore
_cos(2¢) —1 [(R

TET™ =
8 k=0 Fs Ms

exp[—Ls(2z5 — 2 — 2')]Jo(kr)k dk

cos(@0) [* GRE
4mr k=0 fsMs

exp[—L(225 — z — 2')]J1 (k1) dk.

We can compare this to equation (4.165) in Ziol8, with I < =1 and slightly re-arranging it to look more alike, we
get

vt [T G R
471'7’2 k=0 Fl MH;l

E;_J,_H = exp(—I'1h™*7) Jo(kr)kdrk

+

dmr3 f o Ty

a? —y? /OO G [Bua Rpa(s=0
. Mp Mpa(k=0)

)) exp(=T'1h"7)J1(kr)dK

G =) Ria(s =0)
dryrt Mpa(k=0)

The notation in this equation follows Zio18.

exp(—m R*7).

The difference between the two previous equations is that the first one contains non-physical contributions. These
have opposite signs in TM+- and TE+-, and therefore cancel each other out. But if we want to know the specific
contributions from TM and TE we have to remove them. The non-physical contributions only affect the .J;-
integrals, and only for k = 0.

The following lists for all 8 cases the term that has to be removed, in the notation of Zio18 (for the notation as in
Hunl5 see the implementation in tmtemod. py):

G (2* —y?) exp(—nl|h~])

TE++ —
+ dryirt My (k=0)’

3.6. Add-ons 59

empymod Documentation, Release 1.7.3

_Cl(%’2 —y?) Rjtrl;l(’i =0) exp(—yh™T)

TEt =
4yt Mia(r=0)
TEt- = _C1($2 —y?) Ry (k= 0) exp(=71h*7)
dmyrd My (k= 0) '
TE ~ = +<1(x2 - yg) RJ}};l(E = O)R;{;l(’% = 0) eXp(—'ylh**)
Ayt M1 (k= 0) 7
et — @ —y?) exp(=m|h”)
dryrrt My.1(k=0) ’
TM—t = _Cl(xz —y°) R—‘;;l(" =0)exp(—71h™)
B dryrd My.a(k =0) ’
TM*T = _Cl(mz - yz) R\j;l(’i = O) eXp(_71h+_)
Aot My.1(k = 0) '
T — 0@ = ?) BUa (= 0 Ry, (k= 0) exp(—yih™ ")
47(717’4 Mv;l(,‘i = O) :

Note that in the first and fourth equations the correction terms have opposite sign as those in the fifth and eighth
equations because at £ = 0 the TM and TE mode correction terms are equal. Also note that in the second and
third equations the correction terms have the same sign as those in the sixth and seventh equations because at
x = 0 the TM and TE mode reflection responses in those terms are equal but with opposite sign: R‘ﬂﬁ;l (k=0) =

+
_RV;I(’Li = 0)
Hun15 uses ¢, whereas Ziol8 uses z, y, for which we can use

2?2 —y?

cos(2¢) = — 2

empymod.scripts.tmtemod.dipole (src, rec, depth, res, freqtime, aniso=None, eperm=None,
mperm=None, verb=2)
Return the electromagnetic field due to a dipole source.

This is a modified version of empymod.model.dipole (). It returns the separated contributions of
TM-, TM-+, TM+-, TM++, TMdirect, TE—, TE-+, TE+-, TE++, and TEdirect.
Parameters src, rec : list of floats or arrays
Source and receiver coordinates (m): [x, y, z]. The x- and y-coordinates can
be arrays, z is a single value. The x- and y-coordinates must have the same
dimension.

Sources or receivers placed on a layer interface are considered in the upper
layer.

Sources and receivers must be in the same layer.
depth : list
Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).
res : array_like
Horizontal resistivities tho_h (Ohm.m); #res = #depth + 1.
freqtime : float
Frequency f (Hz). (The name freqgtime is kept for consistency with
empymod.model.dipole (). Only one frequency at once.
aniso : array_like, optional
Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to
ones.
eperm : array_like, optional
Relative electric permittivities epsilon (-); #eperm = #res. Default is ones.
mperm : array_like, optional
Relative magnetic permeabilities mu (-); #mperm = #res. Default is ones.
verb : {0, 1, 2, 3, 4}, optional

60 Chapter 3. License information

empymod Documentation, Release 1.7.3

Level of verbosity, default is 2:
* (: Print nothing.
* 1: Print warnings.
* 2: Print additional runtime and kernel calls
* 3: Print additional start/stop, condensed parameter information.

* 4: Print additional full parameter information
Returns TM, TE : list of ndarrays, (nfreq, nrec, nsrc)
Frequency-domain EM field [V/m], separated into TM = [TM—-, TM-+,
TM+-, TM++, TMdirect] and TE = [TE-, TE-+, TE+-, TE++, TEdirect].

However, source and receiver are normalised. So the source strength is 1 A
and its length is 1 m. Therefore the electric field could also be written as
[V/(A.m2)].

The shape of EM is (nfreq, nrec, nsrc). However, single dimensions are
removed.

3.6.3 printinfo — Tools to print date, time, and version information
Print or return date, time, and package version information in any environment (Jupyter notebook, IPython con-
sole, Python console, QT console), either as html-table (notebook) or as plain text (anywhere).
This script was heavily inspired by
e ipynbtools.py from https:/github.com/qutip, and
* watermark.py from https://github.com/rasbt/watermark,
Always shown are the OS, number of CPU(s), numpy, scipy, empymod, sys.version, and time/date.

Additionally shown are, if they can be imported, IPython, matplotlib, and numexpr. It also shows MKL
information, if available.

All modules provided in add_pckg are also shown. They have to be imported before versions is called.

empymod.scripts.printinfo.versions (mode="print’, add_pckg=None, ncol=4)
Return date, time, and version information.

Print or return date, time, and package version information in any environment (Jupyter notebook, IPython
console, Python console, QT console), either as html-table (notebook) or as plain text (anywhere).

This script was heavily inspired by:
* ipynbtools.py from qutip https://github.com/qutip
e watermark.py from https://github.com/rasbt/watermark
This is a wrapper for versions_html and versions_text.
Parameters mode : string, optional; {<’print’>, ‘HTML’, ‘Pretty’, ‘plain’, ‘html’}
Defaults to ‘print’:

* ‘print’: Prints text-version to stdout, nothing returned.

e ‘HTML: Returns html-version as IPython.display. HTML(html).
e ‘html’: Returns html-version as plain text.

* ‘Pretty’: Returns text-version as IPython.display.Pretty(text).
 ‘plain’: Returns text-version as plain text.

‘HTML’ and ‘Pretty’ require [Python.

add_pckg : packages, optional
Package or list of packages to add to output information (must be imported
beforehand).

ncol : int, optional

3.6. Add-ons 61

https://github.com/qutip
https://github.com/rasbt/watermark
https://github.com/qutip
https://github.com/rasbt/watermark

empymod Documentation, Release 1.7.3

Number of package-columns in html table; only has effect if
mode="HTML"' or mode="html '. Defaults to 3.
Returns Depending on mode (HTML-instance; plain text; html as plain text; or

nothing, only printing to stdout).

Examples

>>> import pytest
>>> import dateutil
>>> from empymod import versions

>>> versions () # Default values
>>> versions('plain', pytest) # Provide additional package
>>> versions ('HTML', [pytest, dateutil], ncol=5) # HTML

empymod.scripts.printinfo.versions_html (add_pckg=None, ncol=4)
HTML version.

See versions for details.

empymod.scripts.printinfo.versions_text (add_pckg=None)
Plain-text version.

See versions for details.

62 Chapter 3. License information

Bibliography

[Anderson_1975] Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform
integrals: USGS, PB242800; pubs.er.usgs.gov/publication/70045426.

[Anderson_1979] Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1
by adaptive digital filtering: Geophysics, 44, 1287-1305; DOI: 10.1190/1.1441007.

[Anderson_1982] Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM
Trans. on Math. Softw. (TOMS), 8, 344-368; DOI: 10.1145/356012.356014.

[Chave_and_Cox_1982] Chave, A. D., and C. S. Cox, 1982, Controlled electromagnetic sources for measuring
electrical conductivity beneath the oceans: 1. forward problem and model study: Journal of Geophysical
Research, 87, 5327-5338; DOI: 10.1029/JB087iB07p05327.

[Ghosh_1970] Ghosh, D. P., 1970, The application of linear filter theory to the direct interpretation of geoelectri-
cal resistivity measurements: Ph.D. Thesis, TU Delft; UUID: 88a568bb-ebee-4d7b-92df-6639b42da2b?2.

[Guptasarma_and_Singh_1997] Guptasarma, D., and B. Singh, 1997, New digital linear filters for Hankel JO and
J1 transforms: Geophysical Prospecting, 45, 745-762; DOI: 10.1046/j.1365-2478.1997.500292.x.

[Haines_and_Jones_1988] Haines, G. V., and A. G. Jones, 1988, Logarithmic Fourier transformation: Geophysi-
cal Journal, 92, 171-178; DOI: 10.1111/j.1365-246X.1988.tb01131.x.

[Hamilton_2000] Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear power spectrum: Monthly
Notices of the Royal Astronomical Society, 312, pages 257-284; DOI: 10.1046/j.1365-8711.2000.03071.x;
Website of FFTLog: casa.colorado.edu/~ajsh/FFTLog.

[Hunziker_et_al_2015] Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a lay-
ered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80(1), FI-F18;
DOI: 10.1190/ge02013-0411.1; Software: software.seg.org/2015/0001.

[Key_2009] Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology
and synthetic studies for resolving thin resistive layers: Geophysics, 74(2), F9—F20; DOI: 10.1190/1.3058434.
Software: marineemlab.ucsd.edu/Projects/Occam/1DCSEM.

[Key_2012] Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77(3), F21-F30;
DOI: 10.1190/ge02011-0237.1; Software: software.seg.org/2012/0003.

[Kong_2007] Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium:
Geophysical Prospecting, 55, 83—-89; DOI: 10.1111/j.1365-2478.2006.00585.x.

[Shanks_1955] Shanks, D., 1955, Non-linear transformations of divergent and slowly convergent sequences:
Journal of Mathematics and Physics, 34, 1-42; DOI: 10.1002/sapm19553411.

[Slob_et_al_2010] Slob, E., J. Hunziker, and W. A. Mulder, 2010, Green’s tensors for the diffusive electric field
in a VTT half-space: PIER, 107, 1-20: DOI: 10.2528/PIER10052807.

63

https://pubs.er.usgs.gov/publication/70045426
http://doi.org/10.1190/1.1441007
http://doi.org/10.1145/356012.356014
http://doi.org/10.1029/JB087iB07p05327
http://resolver.tudelft.nl/uuid:88a568bb-ebee-4d7b-92df-6639b42da2b2
http://dx.doi.org/10.1046/j.1365-2478.1997.500292.x
http://doi.org/10.1111/j.1365-246X.1988.tb01131.x
http://doi.org/10.1046/j.1365-8711.2000.03071.x
http://casa.colorado.edu/~ajsh/FFTLog
http://doi.org/10.1190/geo2013-0411.1
http://software.seg.org/2015/0001
http://doi.org/10.1190/1.3058434
http://marineemlab.ucsd.edu/Projects/Occam/1DCSEM
http://doi.org/10.1190/geo2011-0237.1
http://software.seg.org/2012/0003
http://doi.org/10.1111/j.1365-2478.2006.00585.x
http://doi.org/10.1002/sapm19553411
http://doi.org/10.2528/PIER10052807

empymod Documentation, Release 1.7.3

[Talman_1978] Talman, J. D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables: Journal
of Computational Physics, 29, pages 35-48; DOIL: 10.1016/0021-9991(78)90107-9.

[Trefethen_2000] Trefethen, L. N., 2000, Spectral methods in MATLAB: Society for Industrial and Ap-
plied Mathematics (SIAM), volume 10 of Software, Environments, and Tools, chapter 12, page 129;
DOI: 10.1137/1.9780898719598.ch12.

[Weniger_1989] Weniger, E. J., 1989, Nonlinear sequence transformations for the acceleration of convergence
and the summation of divergent series: Computer Physics Reports, 10, 189-371; arXiv: abs/math/0306302.

[Werthmuller_2017] Werthmiiller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media
in Python: empymod: Geophysics, 82(6), WB9-WB19; DOI: 10.1190/ge02016-0626.1.

[Werthmuller_2017b] Werthmiiller, D., 2017, Getting started with controlled-source electromagnetic 1D model-
ing: The Leading Edge, 36, 352-355; DOI: 10.1190/tle36040352.1.

[Wynn_1956] Wynn, P., 1956, On a device for computing the e, (.5,) tranformation: Math. Comput., 10, 91-96;
DOI: 10.1090/S0025-5718-1956-0084056-6.

[Ziolkowski_and_Slob_2018] Ziolkowski, A., and E. Slob, 2018, Introduction to Controlled-Source Electromag-
netic Methods: Cambridge University Press; expected to be published late 2018.

64 Bibliography

http://doi.org/10.1016/0021-9991(78)90107-9
http://doi.org/10.1137/1.9780898719598.ch12
https://arxiv.org/abs/math/0306302
http://doi.org/10.1190/geo2016-0626.1
http://doi.org/10.1190/tle36040352.1
http://doi.org/10.1090/S0025-5718-1956-0084056-6

Python Module Index

e

empymod, 7

empymod.
empymod.
empymod.
empymod.
empymod.
empymod.
empymod.
empymod.
empymod.

filters,42

kernel, 37

model, 22

scripts, Sl
scripts.fdesign, 5l
scripts.printinfo, 61
scripts.tmtemod, 57
transform, 39
utils, 45

65

empymod Documentation, Release 1.7.3

66 Python Module Index

Index

A

analytical() (in module empymod.model), 33
anderson_801_1982() (in module empymod.filters), 43
angle_factor() (in module empymod.kernel), 38

B

bipole() (in module empymod.model), 23

C

check_ab() (in module empymod.utils), 48
check_bipole() (in module empymod.utils), 48
check_dipole() (in module empymod.utils), 48
check_frequency() (in module empymod.utils), 47
check_hankel() (in module empymod.utils), 47
check_model() (in module empymod.utils), 46
check_opt() (in module empymod.utils), 47
check_solution() (in module empymod.utils), 48
check_time() (in module empymod.utils), 46
check_time_only() (in module empymod.utils), 45
conv_warning() (in module empymod.utils), 51
cos_1() (in module empymod.scripts.fdesign), 57
cos_2() (in module empymod.scripts.fdesign), 57
cos_3() (in module empymod.scripts.fdesign), 57

D

design() (in module empymod.scripts.fdesign), 54
DigitalFilter (class in empymod.filters), 42
dipole() (in module empymod.model), 28

dipole() (in module empymod.scripts.tmtemod), 60
dIf() (in module empymod.transform), 42

E

EMAurray (class in empymod.utils), 45
empy_hankel() (in module empymod.scripts.fdesign),
57
empymod (module), 7
empymod.filters (module), 42
empymod.kernel (module), 37
empymod.model (module), 22
empymod.scripts (module), 51
empymod.scripts.fdesign (module), 51
empymod.scripts.printinfo (module), 61
empymod.scripts.tmtemod (module), 57

empymod.transform (module), 39
empymod.utils (module), 45

F

fem() (in module empymod.model), 37

ffht() (in module empymod.transform), 41

fft() (in module empymod.transform), 41

fftlog() (in module empymod.transform), 41

fht() (in module empymod.transform), 39

fhti() (in module empymod.transform), 42

fields() (in module empymod.kernel), 39

fqwe() (in module empymod.transform), 41
fromfile() (empymod.filters.DigitalFilter method), 42
fullspace() (in module empymod.kernel), 38

G

get_abs() (in module empymod.utils), 49
get_azm_dip() (in module empymod.utils), 49
get_geo_fact() (in module empymod.utils), 49
get_layer_nr() (in module empymod.utils), 50
get_minimum() (in module empymod.utils), 51
get_off_ang() (in module empymod.utils), 50
get_spline_values() (in module empymod.transform),
42
Ghosh (class in empymod.scripts.fdesign), 56
gpr() (in module empymod.model), 35
greenfct() (in module empymod.kernel), 38

H

halfspace() (in module empymod.kernel), 39
hquad() (in module empymod.transform), 40
hgwe() (in module empymod.transform), 40

j0_1(0) (in module empymod.scripts.fdesign), 56
j0_2() (in module empymod.scripts.fdesign), 56
j0_3() (in module empymod.scripts.fdesign), 56
jO_4(0) (in module empymod.scripts.fdesign), 56
j0_5(0) (in module empymod.scripts.fdesign), 56
j1_10) (in module empymod.scripts.fdesign), 56
j1_2() (in module empymod.scripts.fdesign), 56
j1_30) (in module empymod.scripts.fdesign), 56
j1_4(0) (in module empymod.scripts.fdesign), 56

67

empymod Documentation, Release 1.7.3

j1_50) (in module empymod.scripts.fdesign), 56

K

key_101_2009() (in module empymod.filters), 43

key_101_2012() (in module empymod.filters), 43

key_101_CosSin_2012() (in module empymod.filters),
43

key_201_2009() (in module empymod.filters), 43

key_201_2012() (in module empymod.filters), 44

key_201_CosSin_2012() (in module empymod.filters),
44

key_241_CosSin_2009() (in module empymod.filters),
44

key_401_2009() (in module empymod.filters), 44

key_51_2012() (in module empymod.filters), 44

key_601_CosSin_2009() (in module empymod.filters),
44

key_81_CosSin_2009() (in module empymod.filters),
44

kong_241_2007() (in module empymod.filters), 44

kong_61_2007() (in module empymod.filters), 44

L

load_filter() (in module empymod.scripts.fdesign), 55

P

plot_result() (in module empymod.scripts.fdesign), 55
print_result() (in module empymod.scripts.fdesign), 55
printstartfinish() (in module empymod.utils), 50

Q

gwe() (in module empymod.transform), 42

R

reflections() (in module empymod.kernel), 38

S

save_filter() (in module empymod.scripts.fdesign), 55

set_minimum() (in module empymod.utils), 51

sin_1() (in module empymod.scripts.fdesign), 56

sin_2() (in module empymod.scripts.fdesign), 57

sin_3() (in module empymod.scripts.fdesign), 57

spline_backwards_hankel() = (in module
mod.utils), 51

empy-

T

tem() (in module empymod.model), 37
tofile() (empymod.filters.DigitalFilter method), 43

\Y

versions() (in module empymod.scripts.printinfo), 61

versions_html() (in module empy-
mod.scripts.printinfo), 62

versions_text() (in module empymod.scripts.printinfo),
62

W

wavenumber() (in module empymod.kernel), 37

wavenumber() (in module empymod.model), 35
wer_201_2018() (in module empymod.filters), 44

68

Index

	More information
	Citation
	License information
	Manual
	Roadmap
	Changelog
	Credits
	Code
	Add-ons

	Bibliography
	Python Module Index

