References

[Ande75]Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals: USGS, PB242800; pubs.er.usgs.gov/publication/70045426.
[Ande79]Anderson, W. L., 1979, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering: Geophysics, 44, 1287–1305; DOI: 10.1190/1.1441007.
[Ande82]Anderson, W. L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM Trans. on Math. Softw. (TOMS), 8, 344–368; DOI: 10.1145/356012.356014.
[ChCo82]Chave, A. D., and C. S. Cox, 1982, Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans: 1. forward problem and model study: Journal of Geophysical Research, 87, 5327–5338; DOI: 10.1029/JB087iB07p05327.
[Ghos70]Ghosh, D. P., 1970, The application of linear filter theory to the direct interpretation of geoelectrical resistivity measurements: Ph.D. Thesis, TU Delft; UUID: 88a568bb-ebee-4d7b-92df-6639b42da2b2.
[GuSi97]Guptasarma, D., and B. Singh, 1997, New digital linear filters for Hankel J0 and J1 transforms: Geophysical Prospecting, 45, 745–762; DOI: 10.1046/j.1365-2478.1997.500292.x.
[HaJo88]Haines, G. V., and A. G. Jones, 1988, Logarithmic Fourier transformation: Geophysical Journal, 92, 171–178; DOI: 10.1111/j.1365-246X.1988.tb01131.x.
[Hami00]Hamilton, A. J. S., 2000, Uncorrelated modes of the non-linear power spectrum: Monthly Notices of the Royal Astronomical Society, 312, pages 257–284; DOI: 10.1046/j.1365-8711.2000.03071.x; Website of FFTLog: casa.colorado.edu/~ajsh/FFTLog.
[HuTS15]Hunziker, J., J. Thorbecke, and E. Slob, 2015, The electromagnetic response in a layered vertical transverse isotropic medium: A new look at an old problem: Geophysics, 80(1), F1–F18; DOI: 10.1190/geo2013-0411.1; Software: software.seg.org/2015/0001.
[Key09]Key, K., 2009, 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers: Geophysics, 74(2), F9–F20; DOI: 10.1190/1.3058434. Software: marineemlab.ucsd.edu/Projects/Occam/1DCSEM.
[Key12]Key, K., 2012, Is the fast Hankel transform faster than quadrature?: Geophysics, 77(3), F21–F30; DOI: 10.1190/geo2011-0237.1; Software: software.seg.org/2012/0003.
[Kong07]Kong, F. N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium: Geophysical Prospecting, 55, 83–89; DOI: 10.1111/j.1365-2478.2006.00585.x.
[Shan55]Shanks, D., 1955, Non-linear transformations of divergent and slowly convergent sequences: Journal of Mathematics and Physics, 34, 1–42; DOI: 10.1002/sapm19553411.
[SlHM10]Slob, E., J. Hunziker, and W. A. Mulder, 2010, Green’s tensors for the diffusive electric field in a VTI half-space: PIER, 107, 1–20: DOI: 10.2528/PIER10052807.
[Talm78]Talman, J. D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables: Journal of Computational Physics, 29, pages 35–48; DOI: 10.1016/0021-9991(78)90107-9.
[Tref00]Trefethen, L. N., 2000, Spectral methods in MATLAB: Society for Industrial and Applied Mathematics (SIAM), volume 10 of Software, Environments, and Tools, chapter 12, page 129; DOI: 10.1137/1.9780898719598.ch12.
[Weni89]Weniger, E. J., 1989, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series: Computer Physics Reports, 10, 189–371; arXiv: abs/math/0306302.
[Wert17]Werthmüller, D., 2017, An open-source full 3D electromagnetic modeler for 1D VTI media in Python: empymod: Geophysics, 82(6), WB9–WB19; DOI: 10.1190/geo2016-0626.1.
[Wert17b]Werthmüller, D., 2017, Getting started with controlled-source electromagnetic 1D modeling: The Leading Edge, 36, 352–355; DOI: 10.1190/tle36040352.1.
[Wynn56]Wynn, P., 1956, On a device for computing the \(e_m(S_n)\) tranformation: Math. Comput., 10, 91–96; DOI: 10.1090/S0025-5718-1956-0084056-6.
[ZiSl19]Ziolkowski, A., and E. Slob, 2019, Introduction to Controlled-Source Electromagnetic Methods: Cambridge University Press; ISBN: 9781107058620.