Note
Go to the end to download the full example code.
Full wavefield vs diffusive approximation for a fullspace#
Example comparison of the electric field using the complete Maxwell’s equations, and the electric field using the diffusive or quasi-static approximation.
You can play around with the parameters to see that the difference is getting bigger for
higher frequencies, and
higher electric permittivity / magnetic permeability.
import empymod
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
Define model#
x = np.arange(526)*20. - 500
x[x == 0] += 1e-3 # Avoid warning message regarding 0 offset.
rx = np.tile(x[:, None], x.size)
ry = rx.transpose()
inp = {
'src': [0, 0, 0], # Source [x, y, z]
'rec': [rx.ravel(), ry.ravel(), 50], # Receiver [x, y, z]
'res': 1/3, # Resistivity
'freqtime': 0.5, # Frequency
'aniso': np.sqrt(10), # Anisotropy
'ab': 11, # Configuration; 11=Exx
'epermH': 1.0, # Electric permittivity
'mpermH': 1.0, # Magnetic permeability
'verb': 1, # Verbosity
}
Computation#
# Halfspace
hs = empymod.analytical(solution='dfs', **inp).reshape(rx.shape)
# Fullspace
fs = empymod.analytical(**inp).reshape(rx.shape)
# Relative error (%)
amperr = np.abs((fs.amp() - hs.amp())/fs.amp())*100
phaerr = np.abs((fs.pha(unwrap=False) - hs.pha(unwrap=False)) /
fs.pha(unwrap=False))*100
Plot#
fig, (ax1, ax2) = plt.subplots(
1, 2, figsize=(9, 5), sharey=True, constrained_layout=True)
fig.suptitle('Analytical fullspace solution\nDifference between full ' +
'wavefield and diffusive approximation.')
# Min and max, properties
vmin = 1e-10
vmax = 1e0
props = {
'levels': np.logspace(np.log10(vmin), np.log10(vmax), 50),
'locator': plt.matplotlib.ticker.LogLocator(),
'cmap': 'Greys',
}
# Plot amplitude error
ax1.set_title('Amplitude')
cf1 = ax1.contourf(rx/1000, ry/1000, amperr.clip(vmin, vmax), **props)
ax1.set_ylabel('Crossline offset (km)')
# Plot phase error
ax2.set_title('Phase')
cf2 = ax2.contourf(rx/1000, ry/1000, phaerr.clip(vmin, vmax), **props)
for ax in [ax1, ax2]:
ax.set_xlabel('Inline offset (km)')
ax.set_xlim(min(x)/1000, max(x)/1000)
ax.set_ylim(min(x)/1000, max(x)/1000)
ax.axis('equal')
# Plot colorbar
cb = plt.colorbar(cf2, ax=[ax1, ax2], ticks=10**np.arange(-10, 1.))
cb.set_label('Relative Error (%)')

empymod.Report()
Total running time of the script: (0 minutes 1.939 seconds)
Estimated memory usage: 336 MB