bipole

empymod.model.bipole(src, rec, depth, res, freqtime, signal=None, aniso=None, epermH=None, epermV=None, mpermH=None, mpermV=None, msrc=False, srcpts=1, mrec=False, recpts=1, strength=0, **kwargs)[source]

Return EM fields due to arbitrary rotated, finite length EM dipoles.

Calculate the electromagnetic frequency- or time-domain field due to arbitrary rotated, finite electric or magnetic bipole sources, measured by arbitrary rotated, finite electric or magnetic bipole receivers. By default, the electromagnetic response is normalized to source and receiver of 1 m length, and source strength of 1 A.

Parameters
src, reclist of floats or arrays

Source and receiver coordinates (m):

  • [x0, x1, y0, y1, z0, z1] (bipole of finite length)

  • [x, y, z, azimuth, dip] (dipole, infinitesimal small)

Dimensions:

  • The coordinates x, y, and z (dipole) or x0, x1, y0, y1, z0, and z1 (bipole) can be single values or arrays.

  • The variables x and y (dipole) or x0, x1, y0, and y1 (bipole) must have the same dimensions.

  • The variables z, azimuth, and dip (dipole) or z0 and z1 (bipole) must either be single values or having the same dimension as the other coordinates.

Angles (coordinate system is either left-handed with positive z down or right-handed with positive z up; East-North-Depth):

  • azimuth (°): horizontal deviation from x-axis, anti-clockwise.

  • +/-dip (°): vertical deviation from xy-plane down/up-wards.

Sources or receivers placed on a layer interface are considered in the upper layer.

depthlist

Absolute layer interfaces z (m); #depth = #res - 1 (excluding +/- infinity).

resarray_like

Horizontal resistivities rho_h (Ohm.m); #res = #depth + 1.

Alternatively, res can be a dictionary. See the main manual of empymod too see how to exploit this hook to re-calculate etaH, etaV, zetaH, and zetaV, which can be used to, for instance, use the Cole-Cole model for IP.

freqtimearray_like

Frequencies f (Hz) if signal==None, else times t (s); (f, t > 0).

signal{None, 0, 1, -1}, optional

Source signal, default is None:

  • None: Frequency-domain response

  • -1 : Switch-off time-domain response

  • 0 : Impulse time-domain response

  • +1 : Switch-on time-domain response

anisoarray_like, optional

Anisotropies lambda = sqrt(rho_v/rho_h) (-); #aniso = #res. Defaults to ones.

epermH, epermVarray_like, optional

Relative horizontal/vertical electric permittivities epsilon_h/epsilon_v (-); #epermH = #epermV = #res. If epermH is provided but not epermV, isotropic behaviour is assumed. Default is ones.

mpermH, mpermVarray_like, optional

Relative horizontal/vertical magnetic permeabilities mu_h/mu_v (-); #mpermH = #mpermV = #res. If mpermH is provided but not mpermV, isotropic behaviour is assumed. Default is ones.

msrc, mrecbool, optional

If True, source/receiver (msrc/mrec) is magnetic, else electric. Default is False.

srcpts, recptsint, optional

Number of integration points for bipole source/receiver, default is 1:

  • srcpts/recpts < 3 : bipole, but calculated as dipole at centre

  • srcpts/recpts >= 3 : bipole

strengthfloat, optional

Source strength (A):

  • If 0, output is normalized to source and receiver of 1 m length, and source strength of 1 A.

  • If != 0, output is returned for given source and receiver length, and source strength.

Default is 0.

verb{0, 1, 2, 3, 4}, optional

Level of verbosity, default is 2:

  • 0: Print nothing.

  • 1: Print warnings.

  • 2: Print additional runtime and kernel calls

  • 3: Print additional start/stop, condensed parameter information.

  • 4: Print additional full parameter information

ht{‘dlf’, ‘qwe’, ‘quad’}, optional

Flag to choose either the Digital Linear Filter (DLF) method, the Quadrature-With-Extrapolation (QWE), or a simple Quadrature (QUAD) for the Hankel transform. Defaults to ‘dlf’.

htargdict, optional

Possible parameters depends on the value for ht:

  • If ht=’dlf’:

    • dlf: string of filter name in empymod.filters or the filter method itself. (default: empymod.filters.key_201_2009)

    • pts_per_dec: points per decade; (default: 0):

      • If 0: Standard DLF.

      • If < 0: Lagged Convolution DLF.

      • If > 0: Splined DLF

  • If ht=’qwe’:

    • rtol: relative tolerance (default: 1e-12)

    • atol: absolute tolerance (default: 1e-30)

    • nquad: order of Gaussian quadrature (default: 51)

    • maxint: maximum number of partial integral intervals (default: 40)

    • pts_per_dec: points per decade; (default: 0)

      • If 0, no interpolation is used.

      • If > 0, interpolation is used.

    • diff_quad: criteria when to swap to QUAD (only relevant if pts_per_dec=-1) (default: 100)

    • a: lower limit for QUAD (default: first interval from QWE)

    • b: upper limit for QUAD (default: last interval from QWE)

    • limit: limit for quad (default: maxint)

  • If ht=’quad’:

    • rtol: relative tolerance (default: 1e-12)

    • atol: absolute tolerance (default: 1e-20)

    • limit: An upper bound on the number of subintervals used in the adaptive algorithm (default: 500)

    • a: Minimum wavenumber (default 1e-6)

    • b: Maximum wavenumber (default 0.1)

    • pts_per_dec: points per decade (default: 40)

ft{‘dlf’, ‘sin’, ‘cos’, ‘qwe’, ‘fftlog’, ‘fft’}, optional

Only used if signal!=None. Flag to choose either the Digital Linear Filter method (Sine- or Cosine-Filter), the Quadrature-With-Extrapolation (QWE), the FFTLog, or the FFT for the Fourier transform. Defaults to ‘dlf’ (which is ‘sin’ if signal>=0, else ‘cos’).

ftargdict, optional

Only used if signal!=None. Possible parameters depends on the value for ft:

  • If ft=’dlf’, ‘sin’, or ‘cos’:

  • If ft=’qwe’:

    • rtol: relative tolerance (default: 1e-8)

    • atol: absolute tolerance (default: 1e-20)

    • nquad: order of Gaussian quadrature (default: 21)

    • maxint: maximum number of partial integral intervals (default: 200)

    • pts_per_dec: points per decade (default: 20)

    • diff_quad: criteria when to swap to QUAD (default: 100)

    • a: lower limit for QUAD (default: first interval from QWE)

    • b: upper limit for QUAD (default: last interval from QWE)

    • limit: limit for quad (default: maxint)

  • If ft=’fftlog’:

    • pts_per_dec: sampels per decade (default: 10)

    • add_dec: additional decades [left, right] (default: [-2, 1])

    • q: exponent of power law bias (default: 0); -1 <= q <= 1

  • If ft=’fft’:

    • dfreq: Linear step-size of frequencies (default: 0.002)

    • nfreq: Number of frequencies (default: 2048)

    • ntot: Total number for FFT; difference between nfreq and ntot is padded with zeroes. This number is ideally a power of 2, e.g. 2048 or 4096 (default: nfreq).

    • pts_per_dec: points per decade (default: None)

    Padding can sometimes improve the result, not always. The default samples from 0.002 Hz - 4.096 Hz. If pts_per_dec is set to an integer, calculated frequencies are logarithmically spaced with the given number per decade, and then interpolated to yield the required frequencies for the FFT.

xdirectbool or None, optional

Direct field calculation (only if src and rec are in the same layer):

  • If True, direct field is calculated analytically in the frequency domain.

  • If False, direct field is calculated in the wavenumber domain.

  • If None, direct field is excluded from the calculation, and only reflected fields are returned (secondary field).

Defaults to False.

loop{None, ‘freq’, ‘off’}, optional

Define if to calculate everything vectorized or if to loop over frequencies (‘freq’) or over offsets (‘off’), default is None. It always loops over frequencies if ht=’qwe’ or if pts_per_dec=-1. Calculating everything vectorized is fast for few offsets OR for few frequencies. However, if you calculate many frequencies for many offsets, it might be faster to loop over frequencies. Only comparing the different versions will yield the answer for your specific problem at hand!

Returns
EMEMArray, (nfreqtime, nrec, nsrc)

Frequency- or time-domain EM field (depending on signal):

  • If rec is electric, returns E [V/m].

  • If rec is magnetic, returns H [A/m].

EMArray is a subclassed ndarray with .pha and .amp attributes (only relevant for frequency-domain data).

The shape of EM is (nfreqtime, nrec, nsrc). However, single dimensions are removed.

See also

dipole

EM fields due to infinitesimal small EM dipoles.

loop

EM fields due to a magnetic source loop.

Examples

In [1]: import empymod
   ...: import numpy as np
   ...: # x-directed bipole source: x0, x1, y0, y1, z0, z1
   ...: src = [-50, 50, 0, 0, 100, 100]
   ...: # x-directed dipole receiver-array: x, y, z, azimuth, dip
   ...: rec = [np.arange(1, 11)*500, np.zeros(10), 200, 0, 0]
   ...: # layer boundaries
   ...: depth = [0, 300, 1000, 1050]
   ...: # layer resistivities
   ...: res = [1e20, .3, 1, 50, 1]
   ...: # Frequency
   ...: freq = 1
   ...: # Calculate electric field due to an electric source at 1 Hz.
   ...: # [msrc = mrec = False (default)]
   ...: EMfield = empymod.bipole(src, rec, depth, res, freq, verb=3)
   ...: 

:: empymod START  ::  v2.1.2

   depth       [m] :  0 300 1000 1050
   res     [Ohm.m] :  1E+20 0.3 1 50 1
   aniso       [-] :  1 1 1 1 1
   epermH      [-] :  1 1 1 1 1
   epermV      [-] :  1 1 1 1 1
   mpermH      [-] :  1 1 1 1 1
   mpermV      [-] :  1 1 1 1 1
   direct field    :  Comp. in wavenumber domain
   frequency  [Hz] :  1
   Hankel          :  DLF (Fast Hankel Transform)
     > Filter      :  Key 201 (2009)
     > DLF type    :  Standard
   Loop over       :  None (all vectorized)
   Source(s)       :  1 bipole(s)
     > intpts      :  1 (as dipole)
     > length  [m] :  100
     > strength[A] :  0
     > x_c     [m] :  0
     > y_c     [m] :  0
     > z_c     [m] :  100
     > azimuth [°] :  0
     > dip     [°] :  0
   Receiver(s)     :  10 dipole(s)
     > x       [m] :  500 - 5000 : 10  [min-max; #]
     > y       [m] :  0 - 0 : 10  [min-max; #]
     > z       [m] :  200
     > azimuth [°] :  0
     > dip     [°] :  0
   Required ab's   :  11

:: empymod END; runtime = 0:00:00.004849 :: 1 kernel call(s)


In [2]: EMfield[0]
Out[2]: (1.6880934577857314e-10-3.083031298956568e-10j)